科目: 來源: 題型:
【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)“我最喜愛的體育項目”進(jìn)行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:
(1)該班共有_____名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為_____;
(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰Rt△BPQ的頂點P在正方形ABCD的對角線AC上(P與AC不重合),∠PBQ=90°,QP與BC交于E,QP延長線交AD于F,連CQ.
(1)①求證:AP=CQ ;
②求證:
(2)當(dāng)時,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】大學(xué)生小李和同學(xué)一起自主創(chuàng)業(yè)開辦了一家公司,公司對經(jīng)營的盈虧情況在每月的最后一天結(jié)算一次.在1-12月份中,該公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關(guān)系.
(1)求y與x函數(shù)關(guān)系式.
(2)該公司從哪個月開始“扭虧為盈”(當(dāng)月盈利)? 直接寫出9月份一個月內(nèi)所獲得的利潤.
(3)在前12 個月中,哪個月該公司所獲得利潤最大?最大利潤為多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y= -x+b的圖象與反比例函數(shù)(x>0)的圖象交于點A(m , 3)和B(3 , n ).過A作AC⊥x軸于C,交OB于E,且EB = 2EO
(1)求一次函數(shù)和反比例函數(shù)解析式
(2)點P是線段AB上異于A,B的一點,過P作PD⊥x軸于D,若四邊形APDC面積為S,求S的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學(xué)活動課上老師帶領(lǐng)全班學(xué)生測量旗桿高度.如圖垂直于地面的旗桿頂端A垂下一根繩子.小明同學(xué)將繩子拉直釘在地上,繩子末端恰好在點C處且測得旗桿頂端A的仰角為75°;小亮同學(xué)接著拿起繩子末端向前至D處,拉直繩子,此時測得繩子末端E距離地面1.5 m且與旗桿頂端A的仰角為60°根據(jù)兩位同學(xué)的測量數(shù)據(jù),求旗桿AB的高度.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,sin60°≈0.87,結(jié)果精確到1米)
查看答案和解析>>
科目: 來源: 題型:
【題目】平面直角坐標(biāo)系中,函數(shù)(x>0),y=x-1,y=x-4的圖象如圖所示,p(a , b)是直線上一動點,且在第一象限.過P作PM∥x軸交直線于M,過P作PN∥y軸交曲線于N.
(1)當(dāng)PM=PN時,求P點坐標(biāo)
(2)當(dāng)PM > PN時,直接寫出a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線C1的解析式為y= -x2+bx+c,C1經(jīng)過A(-2,5)、B(1,2)兩點.
(1)求b、c的值;
(2)若一條拋物線與拋物線C1都經(jīng)過A、B兩點,且開口方向相同,稱兩拋物線是“兄弟拋物線”,請直接寫出C1的一條“兄弟拋物線”的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等邊△ABC中,點D、E、F分別是AB、AC、BC中點,點M在CB的延長線上,△DMN為等邊三角形,且EN經(jīng)過F點.下列結(jié)論:①EN=MF ②MB=FN ③MP·DP=NP·FP ④MB·BP=PF·FC,正確的結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸是直線x=1,與x軸交于A、B(-1,0),與y軸交于C.下列結(jié)論錯誤的是( )
A.二次函數(shù)的最大值為a+b+cB.4a-2b+c﹤0
C.當(dāng)y>0時,-1﹤x﹤3D.方程ax2+bx+c=-2解的情況可能是無實數(shù)解,或一個解,或二個解.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線頂點坐標(biāo)為(2,﹣4),且與x軸交于原點和點C,對稱軸與x軸交點為M.
(1)求拋物線的解析式;
(2)A點在拋物線上,且A點的橫坐標(biāo)為﹣2,在拋物線對稱軸上找一點B,使得AB與CB的差最大,求B點的坐標(biāo);
(3)P點在拋物線的對稱軸上,且P點的縱坐標(biāo)為8.探究:在拋物線上是否存在點Q使得O、M、P、Q四點共圓,若存在求出Q點坐標(biāo);若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com