【題目】如圖1,已知△ABC中,AB=10cmAC=8cm,BC=6cm.如果點(diǎn)PB出發(fā)沿BA方向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)QA出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s.連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問(wèn)題:

1)當(dāng)t為何值時(shí),PQ∥BC

2)設(shè)△AQP面積為S(單位:cm2),當(dāng)t為何值時(shí),S取得最大值,并求出最大值.

3)是否存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.

4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t,使四邊形AQPQ′為菱形?若存在,求出此時(shí)菱形的面積;若不存在,請(qǐng)說(shuō)明理由.

【答案】1s2)當(dāng)t=s時(shí),S取得最大值,最大值為cm23)不存在。理由見解析(4)存在,cm2

【解析】

解:∵AB=10cm,AC=8cmBC=6cm,

由勾股定理逆定理得△ABC為直角三角形,∠C為直角。

1BP=2t,則AP=10﹣2t

PQ∥BC,則,即,解得

當(dāng)s時(shí),PQ∥BC。

2)如圖1所示,過(guò)P點(diǎn)作PD⊥AC于點(diǎn)D。

PD∥BC,∴△APD∽△ABC

,即,解得。

∴S=×AQ×PD=×2t×

。

當(dāng)t=s時(shí),S取得最大值,最大值為cm2。

3)不存在。理由如下:

假設(shè)存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分,

則有SAQP=SABC,而SABC=ACBC=24,此時(shí)SAQP=12。

由(2)可知,SAQP==12,化簡(jiǎn)得:t2﹣5t+10=0。

∵△=﹣52﹣4×1×10=﹣150,此方程無(wú)解,

不存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分。

4)存在。

假設(shè)存在時(shí)刻t,使四邊形AQPQ′為菱形,

則有AQ=PQ=BP=2t。

如圖2所示,過(guò)P點(diǎn)作PD⊥AC于點(diǎn)D

則有PD∥BC,

∴△APD∽△ABC

,即。

解得:PD=,AD=,

∴QD=AD﹣AQ=。

Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(2+2=2t2,

化簡(jiǎn)得:13t2﹣90t+125=0,解得:t1=5t2=

∵t=5s時(shí),AQ=10cmAC,不符合題意,舍去,∴t=。

由(2)可知,SAQP=

∴S菱形AQPQ′=2SAQP=2×=2×[﹣×2+6×]=

存在時(shí)刻t=,使四邊形AQPQ′為菱形,此時(shí)菱形的面積為cm2。

1)由PQ∥BC時(shí)的比例線段關(guān)系,列一元一次方程求解。

2)如圖1所示,過(guò)P點(diǎn)作PD⊥AC于點(diǎn)D,得△APD∽△ABC,由比例線段,求得PD,從而可以得到S的表達(dá)式,然后利用二次函數(shù)的極值求得S的最大值。

3)利用(2)中求得的△AQP的面積表達(dá)式,再由線段PQ恰好把△ABC的面積平分,列出一元二次方程;由于此一元二次方程的判別式小于0,則可以得出結(jié)論:不存在這樣的某時(shí)刻t,使線段PQ恰好把△ABC的面積平分。

4)根據(jù)菱形的性質(zhì)及相似三角形比例線段關(guān)系,求得PQ、QDPD的長(zhǎng)度;然后在Rt△PQD中,求得時(shí)間t的值;最后求菱形的面積,值得注意的是菱形的面積等于△AQP面積的2倍,從而可以利用(2)中△AQP面積的表達(dá)式,這樣可以化簡(jiǎn)計(jì)算。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校舉行一場(chǎng)知識(shí)競(jìng)賽活動(dòng),競(jìng)賽共有4小題,每小題5分,答對(duì)給5分,答錯(cuò)或不答給0分,在該學(xué)校隨機(jī)抽取若干同學(xué)參加比賽,成績(jī)被制成不完整的統(tǒng)計(jì)表如下.

成績(jī)

人數(shù)頻數(shù)

百分比頻率

0

5

10

5

15

20

5

根據(jù)表中已有的信息,下列結(jié)論正確的是  

A. 共有40名同學(xué)參加知識(shí)競(jìng)賽

B. 抽到的同學(xué)參加知識(shí)競(jìng)賽的平均成績(jī)?yōu)?/span>10

C. 已知該校共有800名學(xué)生,若都參加競(jìng)賽,得0分的估計(jì)有100

D. 抽到同學(xué)參加知識(shí)競(jìng)賽成績(jī)的中位數(shù)為15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是正方形ABCD的對(duì)角線BD上一點(diǎn),EFBC,EGCD,垂足分別是F、G求證:AE=FG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABOC中,∠ABO=120°,它的一個(gè)頂點(diǎn)C在反比例函數(shù)y=的圖象上,若將菱形向下平移2個(gè)單位,點(diǎn)A恰好落在函數(shù)圖象上,則該反比函數(shù)的表達(dá)式為( 。

A. y=﹣ B. y=﹣ C. y=﹣ D. y=-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶10次,每次射靶的成績(jī)?nèi)缦拢?/span>

甲:9,10,8,5,7,8,10,8,8,7;

乙:5,7,8,7,8,9,7,9,10,10;

丙:7,6,8,5,4,7,6,3,9,5.

(1)根據(jù)以上數(shù)據(jù)求出表中a,b,c的值;

平均數(shù)

中位數(shù)

方差

8

8

b

a

8

2.2

6

c

3

(2)根據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定,并簡(jiǎn)要說(shuō)明理由;

(3)比賽時(shí)三人依次出場(chǎng),順序由抽簽方式?jīng)Q定,用列舉法求甲、乙相鄰出場(chǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,兩個(gè)含有30°角的完全相同的三角板ABCDEF沿直線l滑動(dòng),下列說(shuō)法錯(cuò)誤的是(  )

A. 四邊形ACDF是平行四邊形 B. 當(dāng)點(diǎn)EBC中點(diǎn)時(shí),四邊形ACDF是矩形

C. 當(dāng)點(diǎn)B與點(diǎn)E重合時(shí),四邊形ACDF是菱形 D. 四邊形ACDF不可能是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點(diǎn)E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點(diǎn)G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則BCG的周長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正六邊形ABCDEF中,對(duì)角線AEBF相交于點(diǎn)M,BDCE相交于點(diǎn)N.

(1)求證:AE=FB;

(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出所有與△ABM全等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中裝有大小和形狀相同的3個(gè)紅球和2個(gè)白球,把它們充分?jǐn)噭颍?/span>

(1)“從中任意抽取1個(gè)球不是紅球就是白球   事件,從中任意抽取1個(gè)球是黑球   事件;

(2)從中任意抽取1個(gè)球恰好是紅球的概率是   ;

(3)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個(gè)球,若兩球同色,則選甲;若兩球異色,則選乙.你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)用列表法或畫樹狀圖法加以說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案