分析 (1)當(dāng)p=0時(shí),解得x=$\frac{3}{2}$,符合題意,當(dāng)p≠0時(shí),只需△=0,求解即可得答案;
(2)M中最多有一個(gè)元素包括M中只有一個(gè)元素和M空集兩種情況,分類(lèi)討論即可求得答案.
解答 解:(1)若M中只有一個(gè)元素,當(dāng)p=0時(shí),原方程化為-2x+3=0,解得x=$\frac{3}{2}$,符合題意,
當(dāng)p≠0時(shí),只需△=4-12p=0,即p=$\frac{1}{3}$,由$\frac{1}{3}$x2-2x+3=0,解得x=3,即M={3}.
當(dāng)p=0時(shí),M={x|$x=\frac{3}{2}$},
綜上,p=$\frac{1}{3}$時(shí),M={3}或p=0時(shí),M={$\frac{3}{2}$}.
(2)若M中最多有一個(gè)元素,當(dāng)p=0時(shí),解得x=$\frac{3}{2}$,符合題意,
當(dāng)p≠0時(shí),△≤0,即4-12p≤0,解得p≥$\frac{1}{3}$.
綜上,實(shí)數(shù)p的取值范圍為:{0}∪[$\frac{1}{3}$,+∞).
點(diǎn)評(píng) 本題考查了集合的表示法,考查了一元二次方程的解的個(gè)數(shù)的判斷問(wèn)題,要注意對(duì)最高次數(shù)項(xiàng)是否為零的討論,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{n+1}-n>\sqrt{n+3}-\sqrt{n+2}({n∈{N^*}})$ | B. | $\sqrt{n+1}-n>\sqrt{n+3}-n({n∈{N^*}})$ | ||
C. | $\sqrt{n+1}-\sqrt{n}>\sqrt{n+3}-\sqrt{n+2}({n∈{N^*}})$ | D. | $\sqrt{n+1}-\sqrt{n}>n-\sqrt{n+2}({n∈{N^*}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{5}{2}$ | C. | $4+2\sqrt{3}$ | D. | $\frac{1}{2}+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x={t}^{2}}\\{y={t}^{4}}\end{array}\right.$(t為參數(shù)) | B. | $\left\{\begin{array}{l}{x=sint}\\{y=si{n}^{2}t}\end{array}\right.$(t為參數(shù)) | ||
C. | $\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t為參數(shù)) | D. | $\left\{\begin{array}{l}{x=\sqrt{t}}\\{y=t}\end{array}\right.$(t為參數(shù)) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16C${\;}_{10}^{4}$ | B. | 32C${\;}_{10}^{4}$ | C. | -8C${\;}_{10}^{6}$ | D. | -16C${\;}_{10}^{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,\frac{1}{e})$ | B. | $(\frac{1}{e},1)$ | C. | (1,e) | D. | (e,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com