12.不等式$\frac{x-3}{x+2}>0$的解集是(-∞,-2)∪(3,+∞).

分析 不等式即即(x-3)(x+2)>0,求得x的范圍.

解答 解:不等式$\frac{x-3}{x+2}>0$,即(x-3)(x+2)>0,求得x<-2,或x>3,
故答案為:(-∞,-2)∪(3,+∞).

點(diǎn)評(píng) 本題主要考查分式不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知sin($\frac{π}{3}$+a)=$\frac{12}{13}$,a∈($\frac{π}{6}$,$\frac{2π}{3}$),則cosα的值為  ( 。
A.$\frac{12\sqrt{3}-5}{13}$B.$\frac{12\sqrt{3}-5}{26}$C.$\frac{12\sqrt{3}+5}{13}$D.$\frac{12\sqrt{3}+5}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知i是虛數(shù)單位,若復(fù)數(shù)(a+i)(2-i)是純虛數(shù),則實(shí)數(shù)a等于(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,a,b,c分別為內(nèi)角A、B、C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC,則A的大小是120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.不等式x2+2x-3≤0的解集為( 。
A.[-1,3]B.[-3,-1]C.[-3,1]D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.現(xiàn)定義一種運(yùn)算“⊕”:對(duì)任意實(shí)數(shù)a,b,a⊕b=$\left\{\begin{array}{l}{b,a-b≥1}\\{a,a-b<1}\end{array}\right.$,設(shè)f(x)=(x2-2x)⊕(x+3),若函數(shù)g(x)=f(x)+k的圖象與x軸恰有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是(-3,-2)∪(-8,-7]∪{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=$\frac{1}{\sqrt{x+1}}$的定義域是(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知直線x+ay-1=0是圓C:x2+y2-4x-2y+1=0的對(duì)稱軸,過(guò)點(diǎn)A(-4,a)作圓C的一條切線,切點(diǎn)為B,則|AB|=( 。
A.2B.6C.4$\sqrt{2}$D.2$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)P為△ABC內(nèi)部及邊界上一點(diǎn),當(dāng)|PA|+|PB|+|PC|取得最大值時(shí),P點(diǎn)( 。
A.在△ABC的內(nèi)部(不含邊界)B.在△ABC的邊界上(不含頂點(diǎn))
C.為△ABC的某個(gè)定點(diǎn)D.以上都有可能,視△ABC的形狀而定

查看答案和解析>>

同步練習(xí)冊(cè)答案