5.已知直線l,m,n,平面α,m?α,n?α,則“l(fā)⊥α”是“l(fā)⊥m且l⊥n”的(  )條件.
A.充分不必要B.必要不充分
C.充要條件D.既不充分也不必要

分析 根據(jù)充分條件和必要條件的定義,再通過(guò)線面垂直的定義及線面垂直的判定定理進(jìn)行判斷,得出結(jié)論.

解答 解:∵l⊥α  由線面垂直的定義知:l⊥m,且l⊥n.
又∵由線面垂直的判定定理知 l⊥m,且l⊥n推不出l⊥α.
∴“l(fā)⊥α”是“l(fā)⊥m,且l⊥n”的充分不必要條件.
故選:A.

點(diǎn)評(píng) 本題能充分考查學(xué)生對(duì)線面垂直的定義及線面垂直定理的理解,并能對(duì)充分、必要條件的概念有個(gè)更深刻的理解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)x+y=1,x≥0,y≥0,則x2+y2的取值范圍是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過(guò)點(diǎn)$(\sqrt{2},1)$,且離心率e=$\frac{{\sqrt{2}}}{2}$,
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)直線x-my+1=0交橢圓E于A,B兩點(diǎn),判斷點(diǎn)$P(-\frac{9}{4},0)$與以線段AB的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)$f(x)=\frac{{\sqrt{x+4}}}{x-1}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-4,+∞)B.[-4,1)∪(1,+∞)C.[-4,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x2+ax+2;
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若函數(shù)f(x)在[-5,5]上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,其中左焦點(diǎn)(-2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,求線段AB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.高為$\sqrt{2}$的四棱錐S-ABCD的底面是邊長(zhǎng)為1的正方形,點(diǎn)S、A、B、C、D均在半徑為1的同一球面上,SA⊥面ABCD,則底面ABCD的中心與頂點(diǎn)S之間的距離為( 。
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{2}+\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.命題“三角形ABC中,若cosA<0,則三角形ABC為鈍角三角形”的逆否命題是(  )
A.三角形ABC中,若三角形ABC為鈍角三角形,則cosA<0
B.三角形ABC中,若三角形ABC為銳角三角形,則cosA≥0
C.三角形ABC中,若三角形ABC為銳角三角形,則cosA<O
D.三角形ABC中,若三角形ABC為銳角或直角三角形,則cosA≥O

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知平面區(qū)域D由以P(1,2)、R(3,5)、Q(-3,4)為頂點(diǎn)的三角形內(nèi)部和邊界組成.
(1)設(shè)點(diǎn)(x,y)在區(qū)域D內(nèi)變動(dòng),求目標(biāo)函數(shù) z=2x+y的最小值;
(2)若在區(qū)域D內(nèi)有無(wú)窮多個(gè)點(diǎn)(x,y)可使目標(biāo)函數(shù)z=mx+y(m<0)取得最小值,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案