17.根據(jù)下列公式,求出下面數(shù)列{an}的前5項(xiàng).
(1)an=$\frac{n}{n+1}$
(2)a1=1,an+1=an+3.

分析 (1)根據(jù)已知中的通項(xiàng)公式,代入可得數(shù)列{an}的前5項(xiàng).
(2)根據(jù)已知中的遞推公式,代入可得數(shù)列{an}的前5項(xiàng).

解答 解:(1)∵an=$\frac{n}{n+1}$,
∴a1=$\frac{1}{2}$,a2=$\frac{2}{3}$,a3=$\frac{3}{4}$,a4=$\frac{4}{5}$,a5=$\frac{5}{6}$;
(2)∵a1=1,an+1=an+3.
∴a2=a1+3=4,
a3=a2+3=7,
a4=a3+3=10,
a5=a4+3=13.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是數(shù)列的通項(xiàng)公式和遞推公式,代入計(jì)算即可,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)O為坐標(biāo)原點(diǎn),P是以F為焦點(diǎn)的拋物線y2=2px(p>0)上任意一點(diǎn),M是線段PF上的點(diǎn),且|PM|=2|MF|,則直線OM的斜率的最大值為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2}{3}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞增,若實(shí)數(shù)a滿足f(2|a-1|)>f(-$\sqrt{2}$),則a的取值范圍是($\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點(diǎn)P(sinθ-cosθ,sinθ+cosθ)在第一象限,則在(0,2π)內(nèi)θ的取值范圍是$\frac{π}{4}$<θ<$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若z=4+3i,則$\frac{\overline{z}}{|z|}$=( 。
A.1B.-1C.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知各項(xiàng)都為正數(shù)的數(shù)列{an}滿足a1=1,an2-(2an+1-1)an-2an+1=0.
(1)求a2,a3;
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若tanα=$\frac{3}{4}$,則cos2α+2sin2α=(  )
A.$\frac{64}{25}$B.$\frac{48}{25}$C.1D.$\frac{16}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式組$\left\{\begin{array}{l}{x+2y≥1}\\{x-3y≤1}\\{{x}^{2}+{y}^{2}-2x≤3}\end{array}\right.$表示的平面區(qū)域的面積為$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案