8.《中國(guó)夢(mèng)想秀》是浙江衛(wèi)士推出的一檔“真人秀”綜藝節(jié)目,節(jié)目開播至今,有上百組的追夢(mèng)人在這個(gè)舞臺(tái)上實(shí)現(xiàn)了自己的夢(mèng)想,某機(jī)構(gòu)隨機(jī)抽取100名參與節(jié)目的選手,以他們的年齡作為樣本進(jìn)行分析研究,并根據(jù)所得數(shù)據(jù)作出如下頻數(shù)分布表:
 選手年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65]
 頻數(shù) 6 22 32 24 10 6
(Ⅰ)在表中作出這些數(shù)據(jù)的頻率分布直方圖;
(Ⅱ)已知樣本中年齡在[55,65]內(nèi)的6位選手中,有4名女選手,2名男選手,現(xiàn)從中選3人進(jìn)行回訪,記選出的女選手的人數(shù)為X,求X的分布列、數(shù)學(xué)期望與方差.

分析 (Ⅰ)由已知條件作出頻率分布表,由此能作出頻率分布直方圖.
(2)由題意X的可能取值為1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列、數(shù)學(xué)期望與方差.

解答 解:(Ⅰ)由已知條件作出頻率分布表:

 選手年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
 頻數(shù) 622  32 24 10 6
頻率 0.06 0.22 0.32 0.24 0.1 0.06
由頻率分布表,作出頻率分布直方圖,如右圖.
(2)∵樣本中年齡在[55,65]內(nèi)的6位選手中,有4名女選手,2名男選手,現(xiàn)從中選3人進(jìn)行回訪,記選出的女選手的人數(shù)為X,
∴X的可能取值為1,2,3,
P(X=1)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{4}{20}$,
P(X=2)=$\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{12}{20}$,
P(X=3)=$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{4}{20}$,
∴X的分布列為:
 X 1 2 3
 P $\frac{4}{20}$ $\frac{12}{20}$ $\frac{4}{20}$
數(shù)學(xué)期望EX=$1×\frac{4}{20}+2×\frac{12}{20}+3×\frac{4}{20}$=2,
方差DX=$(1-2)^{2}×\frac{4}{20}+(2-2)^{2}×\frac{12}{20}$+$(3-2)^{2}×\frac{4}{20}$=$\frac{2}{5}$.

點(diǎn)評(píng) 本題考查頻率分布直方圖的作法,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望、方差的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ) 計(jì)算:1.10+$\root{3}{512}$-0.5-2+lg25+2lg2;
(Ⅱ) 在△ABC中,sinA+cosA=$\frac{2}{3}$,求sinA•cosA的值,并判斷三角形ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如果平面直角坐標(biāo)系中的兩點(diǎn)A(a-1,a+1),B(a,a)關(guān)于直線L對(duì)稱,那么直線L的
方程為x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.用0,1,2,3,4,5這6個(gè)數(shù)字.
(1)能組成多少個(gè)物重復(fù)數(shù)的四位偶數(shù)?
(2)能組成多少個(gè)奇數(shù)數(shù)字互不相鄰的六位數(shù)(無重復(fù)數(shù)字)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)在函數(shù)f(x)=${∫}_{1}^{x}$(2t+1)dt的圖象上,則數(shù)列{an}的通項(xiàng)公式為( 。
A.an=2n-2B.an=n2+n-2
C.an=$\left\{\begin{array}{l}{0,}&{n=1}\\{2n-1,}&{n≥2}\end{array}\right.$D.an=$\left\{\begin{array}{l}{0,}&{n=1}\\{2n,}&{n≥2}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在正方體ABCD-A′B′C′D′中,求向量$\overrightarrow{AC}$分別與向量$\overrightarrow{A′B′}$,$\overrightarrow{B′A′}$,$\overrightarrow{AD′}$,$\overrightarrow{CD′}$,$\overrightarrow{B′D′}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{m+1}$-$\frac{{y}^{2}}{{m}^{2}+1}$=1的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在雙曲線上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則△PF1F2的面積的最小值為( 。
A.mB.m2+1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知二次函數(shù)f(x)=ax2+bx+1(其中b>0)的圖象過點(diǎn)(1,4),且其值域?yàn)閇0,+∞).
(1)求f(x)的解析式;
(2)若g(x)=f(x)-kx在區(qū)間[-2,2]上是單調(diào)函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A(0,-1),B(t,3).
命題p:直線AB與拋物線C:x2=$\frac{1}{2}$y沒有公共點(diǎn);
命題q:直線BA與直線l:2x+y=4有公共點(diǎn);
若命題“p∧q”為假命題,“p∨q”為真命題,試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案