分析 已知等式利用正弦定理化簡(jiǎn),再利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式變形求出sinC的值,確定出C的度數(shù),利用余弦定理列出關(guān)系式,把c,cosC的值代入并利用基本不等式求出ab的最大值,利用三角形面積公式確定出三角形ABC面積的最大值即可.
解答 解:已知等式bcosA+acosB=$\sqrt{3}$R,利用正弦定理化簡(jiǎn)得:2RsinBcosA+2RsinAcosB=2R(sinAcosB+cosAsinB)=2Rsin(A+B)=2RsinC=$\sqrt{3}$R,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵C為銳角,
∴C=$\frac{π}{3}$,
由余弦定理得:c2=a2+b2-2ab•cocC,即4=a2+b2-ab≥2ab-ab=ab,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\sqrt{3}$,
則△ABC面積的最大值為$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點(diǎn)評(píng) 此題考查了正弦、余弦定理,三角形面積公式,熟練掌握公式及定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[0,2\sqrt{2}]$ | B. | $[0,\sqrt{2}]$ | C. | [1,2] | D. | $[\sqrt{2},2\sqrt{2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,+∞) | B. | (0,1) | C. | (0,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com