分析 把等式的左邊化為[(x-1)+2]•[(x-1)-1]6,再按照二項(xiàng)式定理展開,可得(x-1)3的系數(shù)a3的值.
解答 解:∵(1+x)•(2-x)6=[(x-1)+2]•(1-x+1)6=[(x-1)+2]•[(x-1)-1]6
=[(x-1)+2][${C}_{6}^{0}$•(x-1)6-${C}_{6}^{1}$•(x-1)5+${C}_{6}^{2}$•(x-1)4-${C}_{6}^{3}$•(x-1)3+${C}_{6}^{4}$•(x-1)2-${C}_{6}^{5}$•(x-1)+${C}_{6}^{6}$],
且 $({1+x}){({2-x})^6}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_7}{(x-1)^7}$,
故a3=-2${C}_{6}^{3}$+${C}_{6}^{4}$=-25,
故答案為:-25.
點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,+∞) | B. | (-2,3) | C. | [1,3) | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 101111(2) | B. | 1210(3) | C. | 112(8) | D. | 69(12) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com