2.下列各數(shù)中最小的數(shù)為( 。
A.101111(2)B.1210(3)C.112(8)D.69(12)

分析 將各數(shù)都轉(zhuǎn)化為十進(jìn)制數(shù),即可比較大小,從而得解.

解答 解:A、解:101111(2)=1×20+1×21+1×22+1×23+0×24+1×25=47.
B、1210(3)=0×30+1×31+2×32+1×33=3+18+27=48
C、112(8)=2×80+1×81+1×82=8+64=74
D、69(12)=9×120+6×121=81
比較可得:101111(2)最小.
故選:A.

點(diǎn)評(píng) 本題以進(jìn)位制的轉(zhuǎn)換為背景考查算法的多樣性,解題的關(guān)鍵是熟練掌握進(jìn)位制的轉(zhuǎn)化規(guī)則,將各數(shù)都轉(zhuǎn)化為十進(jìn)制數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若直線l過點(diǎn)(3,2)與雙曲線4x2-9y2=36只有一個(gè)公共點(diǎn),則這樣的直線有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.焦點(diǎn)在x軸,且焦點(diǎn)到準(zhǔn)線的距離為4的拋物線方程為( 。
A.y2=4xB.y2=8xC.y2=±4xD.y2=±8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知 $({1+x}){({2-x})^6}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_7}{(x-1)^7}$,則a3=-25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知A為銳角,$lg(\frac{1}{1+cosA})=m,lg(1-cosA)=n$,則lgsinA的值是(  )
A.m-$\frac{1}{n}$B.n-mC.$\frac{1}{2}$(m-$\frac{1}{n}$)D.$\frac{1}{2}$(n-m)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=ax2+bx+1是定義在[-2a,a2-3]上的偶函數(shù),那么a+b的值是(  )
A.3B.-1C.-1或3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,若將y=f(x)的圖象向右平移m(m>0)個(gè)單位后,得到的圖象關(guān)于原點(diǎn)對(duì)稱,則m的最小值為( 。
A.$\frac{π}{24}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知梯形ABCD是直角梯形,按照斜二測(cè)畫法畫出它的直觀圖A′B′C′D′(如圖所示),其中A′D′=2,B′C′=4,A′B′=1,則直角梯形DC邊的長度是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的離心率為2,焦點(diǎn)與橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的焦點(diǎn)相同,那么雙曲線的實(shí)軸長為4.

查看答案和解析>>

同步練習(xí)冊(cè)答案