1.如圖,在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別為A1B1,A1D1的中點,求證:DF∥平面ACE.

分析 以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能證明DF∥平面ACE.

解答 證明:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
在長方體ABCD-A1B1C1D1中,設(shè)AB=a,AD=b,AA1=c,
∵E,F(xiàn)分別為AB1,A1D1的中點,
∴D(0,0,0),F(xiàn)($\frac{a}{2}$,0,c),A(a,0,0),C(0,b,0),E(a,$\frac{2}$,c),
$\overrightarrow{DF}$=($\frac{a}{2}$,0,c),$\overrightarrow{AC}$=(-a,b,0),$\overrightarrow{AE}$=(0,$\frac{2}$,c),
設(shè)平面ACE的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=-ax+by=0}\\{\overrightarrow{n}•\overrightarrow{AE}=\frac{2}y+cz=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,$\frac{a}$,-$\frac{a}{2c}$),
$\overrightarrow{DF}•\overrightarrow{n}$=$\frac{a}{2}-\frac{a}{2}$=0,
∵DF?平面ACE,∴DF∥平面ACE.

點評 本題考查線面平行的證明,是基礎(chǔ)題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若點p、A、B依次是滿足|z-1|=2Rez-$\frac{1}{2}$、|z+1|=1、|z-1|=$\frac{1}{4}$的復(fù)數(shù)z在復(fù)平面上對應(yīng)的點,則|PA|-|PB|的最大值是$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對于任意實數(shù)a、b∈[0,1],則a、b滿足a<b<$\sqrt{a}$的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{5}$C.$\frac{1}{6}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a,b,c為三角形ABC三邊,a≠1,b<c,若logc+ba+logc-ba=2logc+balog c-ba,則三角形ABC的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則(  )
A.函數(shù)f(x)的最小正周期是2π
B.函數(shù)f(x)的圖象可由函數(shù)g(x)=2sin2x的圖象向右平移$\frac{π}{3}$個單位長度得到
C.函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{12}$對稱
D.函數(shù)f(x)在區(qū)間[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ](k∈Z)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題正確的是( 。
A.空間中兩直線所成角的取值范圍是:0°<θ≤90°
B.直線與平面所成角的取值范圍是:0°≤θ≤90°
C.直線傾斜角的取值范圍是:0°<θ≤180°
D.兩異面直線所成的角的取值范圍是:0°<θ<90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.一個幾何體的三視圖如圖所示(單位長度:cm),則此幾何體的表面積是24+2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)的定義域為R,對定義域內(nèi)任意的x,y都有f(x+y)=f(x)+f(y),且當(dāng)x>0時,有f(x)>0.
(1)求證:f(x)是奇函數(shù);
(2)求證:f(x)在定義域上單調(diào)遞增;
(3)設(shè)g(x)=|ax-1|(0<a<1),且關(guān)于x的方程f[g2(x)+mg(x)-1]+f[mg(x)+m+2]=0(m∈R)有三個不等實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.“若a+b>2,則a>2或b>2”的否命題是“若a+b≤2,則a≤2且b≤2”.

查看答案和解析>>

同步練習(xí)冊答案