17.若函數(shù)f(x)=a+$\frac{2}{{4}^{x}+1}$為R上的奇函數(shù),則實(shí)數(shù)a=-1.

分析 根據(jù)f(x)為R上的奇函數(shù)便有f(0)=0,這樣即可求出a的值.

解答 解:f(x)為R上的奇函數(shù);
∴f(0)=a+1=0;
∴a=-1.
故答案為:-1.

點(diǎn)評(píng) 考查奇函數(shù)的定義,奇函數(shù)在原點(diǎn)有定義時(shí),原點(diǎn)處的函數(shù)值為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為(  )
A.$\frac{\sqrt{3}}{6}$πB.$\frac{\sqrt{3}}{2}π$C.$\frac{2\sqrt{3}}{3}π$D.$\frac{4\sqrt{3}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計(jì)劃在空地上用36m長(zhǎng)的籬笆圍成一塊矩形空地種花,怎樣選擇矩形的長(zhǎng)和寬,才能使得所圍成的矩形面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.觀察下列等式
(1+x+x21=1+x+x2,
(1+x+x22=1+2x+3x2+2x3+x4
(1+x+x23=1+3x+6x2+7x3+6x4+3x5+x6,
(1+x+x24=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8,

由以上等式推測(cè)對(duì)于n∈N*,若(1+x+x2n=a0+a1x+a2x2+…+a2nx2n,則a2=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=($\frac{1}{2}$)-x的單調(diào)增區(qū)間是R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)F1、F2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的兩個(gè)焦點(diǎn),P在雙曲線上,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|=2ac(c=$\sqrt{{a}^{2}+^{2}}$),則雙曲線的離心率為( 。
A.$\frac{\sqrt{3}-1}{2}$B.$\frac{\sqrt{3}+1}{2}$C.2D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如果$\sqrt{x+\sqrt{2}}$+|y-1|=0,則|$\frac{1}{x+y}$|=(  )
A.1-$\sqrt{2}$B.1+$\sqrt{2}$C.$\sqrt{2}$-1D.-$\sqrt{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=3x+7的反函數(shù)為y=$\frac{x-7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.從點(diǎn)A(1,-1,3)沿向量$\overrightarrow{a}$=(2,1,-1)的方向取長(zhǎng)為2$\sqrt{6}$的線段AB,則點(diǎn)B的坐標(biāo)為(5,1,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案