分析 分x=0與x≠0兩種情況討論,當(dāng)x≠0時(shí),利用換元法及直線與圓的位置關(guān)系即可.
解答 解:當(dāng)x=0時(shí),$\frac{xy-x}{{x}^{2}+(y-1)^{2}}$=0;
當(dāng)x≠0時(shí),$\frac{xy-x}{{x}^{2}+(y-1)^{2}}$=$\frac{1}{\frac{y-1}{x}+\frac{x}{y-1}}$,
∵動(dòng)點(diǎn)落在(x-1)2+(y-4)2=1上,
∴可令x=1+cosθ,y=4+sinθ,
令$\frac{y-1}{x}$=t,則t=$\frac{4+sinθ-1}{1+cosθ}$=$\frac{sinθ-(-3)}{cosθ-(-1)}$,
即t表示經(jīng)過圓x2+y2=1與定點(diǎn)(-1,-3)的直線l的斜率,
設(shè)直線l的方程為:tx-y+t-3=0,
由1=$\frac{|t-3|}{\sqrt{{t}^{2}+1}}$,解得t=$\frac{4}{3}$,
∴t=$\frac{y-1}{x}$∈[$\frac{4}{3}$,+∞),
∴$\frac{y-1}{x}$+$\frac{x}{y-1}$≥$\frac{25}{12}$,當(dāng)且僅當(dāng)y=±x-1時(shí)等號(hào)成立,
∴0<$\frac{1}{\frac{y-1}{x}+\frac{x}{y-1}}$≤$\frac{12}{25}$,
綜上所述,0≤$\frac{xy-x}{{x}^{2}+(y-1)^{2}}$≤$\frac{12}{25}$.
點(diǎn)評(píng) 本題考查分類討論的思想,考查直線與圓的位置關(guān)系,考查換元法,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{1}{5},\frac{1}{3}})$ | B. | $({\frac{1}{4},\frac{1}{2}})$ | C. | (2,4) | D. | (3,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若復(fù)合命題p∧q為假命題,則p,q都是假命題 | |
B. | “x=1”是“x2-3x+2=0”的充分不必要條件 | |
C. | 對(duì)于命題p:?x∈R,x2+x+1>0 則¬p:?x∈R,x2+x+1≤0 | |
D. | 命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0” |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com