19.求下列各函數(shù)的值域
(1)y=$\frac{1-x}{2x+5}$
(2)y=$\frac{{x}^{2}+x+1}{{x}^{2}+x+2}$.

分析 (1)令2x+5=t,換元可得y=-$\frac{1}{2}$+$\frac{7}{2t}$,由$\frac{7}{2t}$≠0可得;
(2)令s=x2+x+2=(x+$\frac{1}{2}$)2+$\frac{7}{4}$≥$\frac{7}{4}$,換元由不等式的性質(zhì)可得.

解答 解:(1)令2x+5=t,則x=$\frac{1}{2}$(t-5),
∴y=$\frac{1-x}{2x+5}$=$\frac{1-\frac{1}{2}(t-5)}{t}$=-$\frac{1}{2}$+$\frac{7}{2t}$,
∵$\frac{7}{2t}$≠0,∴-$\frac{1}{2}$+$\frac{7}{2t}$≠-$\frac{1}{2}$,
故函數(shù)的值域?yàn)閧x|x≠-$\frac{1}{2}$};
(2)令s=x2+x+2=(x+$\frac{1}{2}$)2+$\frac{7}{4}$≥$\frac{7}{4}$,
∴y=$\frac{{x}^{2}+x+1}{{x}^{2}+x+2}$=$\frac{s-1}{s}$=1-$\frac{1}{s}$,
∵s≥$\frac{7}{4}$,∴0<$\frac{1}{s}$≤$\frac{4}{7}$,
∴-$\frac{4}{7}$≤-$\frac{1}{s}$<0,∴$\frac{3}{7}$≤1-$\frac{1}{s}$<1,
∴函數(shù)的值域?yàn)閇$\frac{3}{7}$,1)

點(diǎn)評(píng) 本題考查函數(shù)的值域,涉及換元法和不等式的性質(zhì),屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若關(guān)于x的方程sinx+$\sqrt{3}$cosx+a=0在[0,2π]上有三個(gè)實(shí)根,則a的值為-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=log2$\frac{1-x}{1+x}$+2,若f(m)=4,則f(-m)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求過(guò)點(diǎn)(2,1),且平行于直線3x-y+5=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求過(guò)點(diǎn)O(0,0),M(1,1),N(2,4)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知4∈{x|x2+ax+a2-12=0},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知x+y=5(x>0,y>0),求xy的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖是一個(gè)幾何體的三視圖,若它的體積是3$\sqrt{3}$,則a=$\sqrt{3}$,該幾何體的表面積為2$\sqrt{3}$+18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2cosx(sinx+cosx)-1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[-\frac{π}{6},-\frac{π}{12}\;]$上的最大值與最小值的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案