分析 (1)a,b,c成等差數(shù)列,可得2b=a+c,利用cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,代入化簡再利用基本不等式的得出.
(2)利用倍角公式、余弦定理即可得出.
解答 解:(1)∵a,b,c成等差數(shù)列,∴2b=a+c,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-(\frac{a+c}{2})^{2}}{2ac}$$\frac{3({a}^{2}+{c}^{2})-2ac}{8ac}$≥$\frac{3×2ac-2ac}{8ac}$=$\frac{1}{2}$.
又B∈(0,π),
∴B∈$(0,\frac{π}{3}]$.
(2)∵b=2,∴a+c=4.
∴2acos2$\frac{C}{2}$+2ccos2$\frac{A}{2}$
=a(cosC+1)+c(cosA+1)
=a+c+acosC+ccosA
=a+c+a×$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$+$c×\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$
=a+c+b=6.
點(diǎn)評 本題考查了等差數(shù)列的性質(zhì)、余弦定理、基本不等式的性質(zhì)、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com