8.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線與曲線y=x3+2相切,則雙曲線的離心率為$\sqrt{10}$.

分析 求出雙曲線的漸近線方程,函數(shù)y=x3+2,求導(dǎo)函數(shù),再設(shè)切點(diǎn)坐標(biāo),利用雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與曲線y=x3+2相切,建立方程組,即可求得幾何量之間的關(guān)系,從而可求雙曲線的離心率.

解答 解:雙曲線的漸近線方程為y=±$\frac{a}$x,函數(shù)y=x3+2,求導(dǎo)函數(shù)可得y=3x2
設(shè)切點(diǎn)坐標(biāo)為(m,n),則
∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與曲線y=x3+2相切,
∴$\left\{\begin{array}{l}{n=3{m}^{2}}\\{n=\frac{a}m}\\{3{m}^{2}=\frac{a}}\end{array}\right.$,∴m=1,$\frac{a}$=3,∴b=3a,
∴c2=a2+b2=10a2,
∴c=$\sqrt{10}$a,
∴e=$\frac{c}{a}$=$\sqrt{10}$
故答案為:$\sqrt{10}$.

點(diǎn)評(píng) 本題考查直線與曲線相切,考查雙曲線的幾何性質(zhì),正確運(yùn)用雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與曲線y=x3+2相切是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}-2,x≤0}\\{3x-2,x>0}\end{array}\right.$,設(shè)集合A={y|y=|f(x)|,-1≤x≤1},B={y|y=ax,-1≤x≤1},若對(duì)同一x的值,總有y1≥y2,其中y1∈A,y2∈B,則實(shí)數(shù)a的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且a2=b2+c2-bc.
(Ⅰ)求角A的大小;
(Ⅱ)若a=$\sqrt{3}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.有2位女生,3位男生站成一排合影,要求女生甲不在隊(duì)伍兩端,3位男生中有且僅有2位相鄰,則不同的排隊(duì)方法共有48種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.運(yùn)行如圖的程序框圖,設(shè)輸出數(shù)據(jù)構(gòu)成的集合為A,則集合A中元素的個(gè)數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖是利用斜二測(cè)畫法畫出的△ABO的直觀圖,已知O′B′=4,且△ABO的面積為16,過A′作A′C′⊥x′軸,則A′C′的長為( 。
A.$2\sqrt{2}$B.$\sqrt{2}$C.$16\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.口袋中有20個(gè)球,其中白球9個(gè),紅球5個(gè),黑球6個(gè),現(xiàn)從中任取10個(gè)球,使得白球不少于2個(gè)但不多于8個(gè),紅球不少于2個(gè),黑球不多于3個(gè),那么上述取法的種數(shù)是( 。
A.14B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知某幾何體的三視圖如圖所示,其中俯視圖是扇形,則該幾何體的體積為(  )
A.4 πB.2 πC.$\frac{4π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距為2,離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l經(jīng)過點(diǎn)M(0,1),且與橢圓C交于A,B兩點(diǎn),若$\overrightarrow{AM}$=2$\overrightarrow{MB}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案