8.甲、乙兩人騎自行車從相距s千米的兩地同時(shí)出發(fā),若同向而行,經(jīng)過(guò)a小時(shí)甲追上乙,若相向而行,經(jīng)過(guò)b小時(shí)兩人相遇,設(shè)甲速為v1千米/小時(shí),乙速為v2千米/小時(shí),那么$\frac{{v}_{1}}{{v}_{2}}$=$\frac{a+b}{a-b}$.

分析 根據(jù)題意得到a(v1-v2)=s,①,b(v1+v2)=s,②,由①②,解得v1,v2,即可求出答案.

解答 解:a(v1-v2)=s,①,b(v1+v2)=s,②,
由①②,解得v1=$\frac{\frac{s}{a}+\frac{s}}{2}$,v2=$\frac{\frac{s}-\frac{s}{a}}{2}$,
∴$\frac{{v}_{1}}{{v}_{2}}$=$\frac{a+b}{a-b}$,
故答案為:$\frac{a+b}{a-b}$.

點(diǎn)評(píng) 本題考查了行程問(wèn)題和追及問(wèn)題,以及速度路程時(shí)間的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求值:
(1)($\frac{3}{5}$)0+2-2•|-0.064|${\;}^{\frac{1}{3}}$-($\frac{9}{4}$)${\;}^{\frac{1}{2}}$;
(2)log2(47×25)+log26-log23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}滿足an+1=5an-6an-1(n≥2),且a1=1,a2=4,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(1,2),B(n-1,3),C(-1,3-n).
(1)如果∠A是直角,求實(shí)數(shù)n的值;
(2)求過(guò)坐標(biāo)原點(diǎn),且與△ABC的高AD垂直的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(2,3),C(5,6),若在以點(diǎn)C為圓心,r為半徑的圓上存在不同的兩點(diǎn)A,B,使得$\overrightarrow{PA}$-2$\overrightarrow{AB}$=$\overrightarrow{0}$,則r的取值范圍為[$\frac{3}{5}$$\sqrt{2}$,3$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知△ABC中,A(2,1),B(3,-2),C(-3,1),邊BC上的高為AD,求點(diǎn)D的坐標(biāo)及|$\overrightarrow{AD}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知tanα=$\sqrt{2}$,求$\frac{sin{{\;}^{2}α}^{\;}-sinαcosα-3co{s}^{2}a}{5sinαcosα+si{n}^{2}α+1}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知一圓與y軸相切,且在直線y=x上截得的弦AB=2$\sqrt{7}$,圓心在直線x-3y=0上,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知i是虛數(shù)單位,m和n都是實(shí)數(shù),且m(1+i)=2+ni,則$\frac{m+ni}{m-ni}$=(  )
A.-1B.1C.-iD.i

查看答案和解析>>

同步練習(xí)冊(cè)答案