13.已知△ABC中,A(2,1),B(3,-2),C(-3,1),邊BC上的高為AD,求點(diǎn)D的坐標(biāo)及|$\overrightarrow{AD}$|的值.

分析 利用向量共線定理、相互垂直的向量與數(shù)量積之間的關(guān)系即可得出.

解答 解:$\overrightarrow{BC}$=(-6,3),
設(shè)D(x,y),$\overrightarrow{AD}$=(x-2,y-1),$\overrightarrow{BD}$=(x-3,y+2).
由AD⊥BC,可得:$\overrightarrow{AD}$•$\overrightarrow{BC}$=-6(x-2)+3(y-1)=0,化為:2x-y-3=0;
∵點(diǎn)D在BC上,則存在實(shí)數(shù)λ使得$\overrightarrow{BD}$=$λ\overrightarrow{BC}$,∴x-3=-6λ,y+2=3λ,化為x+2y+1=0,
聯(lián)立$\left\{\begin{array}{l}{2x-y-3=0}\\{x+2y+1=0}\end{array}\right.$,解得x=1,y=-1.
∴D(1,-1),
$\overrightarrow{AD}$=(-1,-2),
∴$|\overrightarrow{AD}|$=$\sqrt{(-1)^{2}+(-2)^{2}}$=$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算性質(zhì)、向量共線定理、相互垂直的向量與數(shù)量積之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.等差數(shù)列{an}中,若公差d=2,a4+a17=6,則a2+a4+…+a20的值是( 。
A.35B.30C.40D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}滿足a1=4,an+1an=(n+1)2(n+2)2,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,Sn=2an+4n(n=1,2,3,…)
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{4n}{4-{a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.甲、乙兩人騎自行車從相距s千米的兩地同時(shí)出發(fā),若同向而行,經(jīng)過(guò)a小時(shí)甲追上乙,若相向而行,經(jīng)過(guò)b小時(shí)兩人相遇,設(shè)甲速為v1千米/小時(shí),乙速為v2千米/小時(shí),那么$\frac{{v}_{1}}{{v}_{2}}$=$\frac{a+b}{a-b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$-lg(3x-1)的定義域用區(qū)間表示為$(\frac{1}{3},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知正項(xiàng)數(shù)列{an}滿足:a1=1,an2+2a2n+1≤3anan+1
(1)求證:$\frac{1}{{2}^{n-1}}$≤an≤1.
(2)設(shè)bn=$\frac{{a}_{n}}{{{a}^{2}}_{n+1}}$-$\frac{1}{{a}_{n+1}}$,求證:b1+b2+b3+…+bn<2n+1-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知:關(guān)于x的不等式x2+ax+b<0的解集為(1,2).求:關(guān)于x的不等式bx2+ax+1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示,在正方形紙片ABCD中,AC與BD相交于點(diǎn)O,剪去△AOB,將剩余部分沿OC、OD折疊,使OA、OB重合,則在以A(B)、C、D、O為頂點(diǎn)的四面體中,二面角O-AD-C的余弦值為( 。
A.$\frac{\sqrt{6}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案