18.求值:
(1)($\frac{3}{5}$)0+2-2•|-0.064|${\;}^{\frac{1}{3}}$-($\frac{9}{4}$)${\;}^{\frac{1}{2}}$;
(2)log2(47×25)+log26-log23.

分析 (1)利用指數(shù)冪的運(yùn)算法則即可得出.
(2)由對數(shù)的運(yùn)算法則,結(jié)合log22=1,log22m=m,則可直接求出結(jié)果.

解答 解:(1)($\frac{3}{5}$)0+2-2•|-0.064|${\;}^{\frac{1}{3}}$-($\frac{9}{4}$)${\;}^{\frac{1}{2}}$
=1+$\frac{1}{4}$×$\frac{4}{10}$-$\frac{3}{2}$
=-$\frac{2}{5}$.
(2)log2(47×25)+log26-log23.
=log247+log225+log2$\frac{6}{3}$
=14+5+1
=20.

點(diǎn)評 本題考查了指數(shù)冪的運(yùn)算法則,考查對數(shù)的基本運(yùn)算、對數(shù)的運(yùn)算法則,屬基本運(yùn)算的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)集合A={x|a-3<x<a+3},B={x|x<-1或x>3}.
(1)若a=3,求A∪B;
(2)若A∪B=R,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{6}cosθ}\\{y=\sqrt{2}sinθ}\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=2-\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),T為直線l與曲線C的公共點(diǎn),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求點(diǎn)T的直角坐標(biāo);
(2)將曲線C上所有點(diǎn)的縱坐標(biāo)伸長為原來的$\sqrt{3}$倍(橫坐標(biāo)不變)后得到曲線W,直線m的極坐標(biāo)方程為pcos(θ-$\frac{π}{3}$)=$\sqrt{3}$,求直線m被曲線W截得的線段長為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在等比數(shù)列{an}中,已知a1=3,an=48,Sn=93,則n的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等差數(shù)列{an}中a3•a13=3,a5+a11=4,則a13-a3=-2或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等差數(shù)列{an}中,若公差d=2,a4+a17=6,則a2+a4+…+a20的值是(  )
A.35B.30C.40D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線l:x-ky+2$\sqrt{2}$=0與圓C:x2+y2=4交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),△ABC的面積為S,求S的最大值1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將3本相同的小說,2本相同的詩集全部分給4名同學(xué),每名同學(xué)至少1本,則不同的分法有( 。
A.24種B.28種C.32種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.甲、乙兩人騎自行車從相距s千米的兩地同時(shí)出發(fā),若同向而行,經(jīng)過a小時(shí)甲追上乙,若相向而行,經(jīng)過b小時(shí)兩人相遇,設(shè)甲速為v1千米/小時(shí),乙速為v2千米/小時(shí),那么$\frac{{v}_{1}}{{v}_{2}}$=$\frac{a+b}{a-b}$.

查看答案和解析>>

同步練習(xí)冊答案