7.證明:函數(shù)$f(x)=\frac{1}{{\sqrt{x}}}$在區(qū)間(0,+∞)上是減函數(shù).

分析 根據(jù)函數(shù)單調(diào)性的定義利用定義法進行證明即可.

解答 解:任取x1,x2∈(0,+∞),且x1<x2,則$f({x_1})-f({x_2})=\frac{1}{{\sqrt{x_1}}}-\frac{1}{{\sqrt{x_2}}}$…(3分)
=$\frac{{\sqrt{x_2}-\sqrt{x_1}}}{{\sqrt{x_1}•\sqrt{x_2}}}=\frac{{({\sqrt{x_2}-\sqrt{x_1}})({\sqrt{x_2}+\sqrt{x_1}})}}{{\sqrt{x_1}•\sqrt{x_2}({\sqrt{x_2}+\sqrt{x_1}})}}$=$\frac{{{x_2}-{x_1}}}{{\sqrt{x_1}•\sqrt{x_2}({\sqrt{x_1}+\sqrt{x_2}})}}$…(6分)
因為x2-x1>0,$\sqrt{x_1}>0,\sqrt{x_2}>0$,
所以$\sqrt{x_1}+\sqrt{x_2}>0$,$\sqrt{x_1}•\sqrt{x_2}({\sqrt{x_1}+\sqrt{x_2}})>0$,…(8分)
所以f(x1)-f(x2)>0,
即函數(shù)$f(x)=\frac{1}{{\sqrt{x}}}$在區(qū)間(0,+∞)上是減函數(shù).…(10分)

點評 本題主要考查函數(shù)單調(diào)性的判斷,利用函數(shù)單調(diào)性的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)在其定義域(-∞,0)上是減函數(shù),且f(1-m)<f(m-3),則實數(shù)m的取值范圍是( 。
A.(-∞,2)B.(0,1)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)事件A與B相互獨立,兩個事件中只有A發(fā)生的概率與只有B發(fā)生的概率都是$\frac{1}{4}$,求P(A)、P(B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在直角梯形ABCD中,AB⊥AD,AB=AD=2,CD=4,將三角形ABD沿BD翻折,使面ABD⊥面BCD.
(Ⅰ) 求線段AC的長度;
(Ⅱ) 求證:AD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某同學(xué)在求函數(shù)y=lgx和$y=\frac{1}{x}$的圖象的交點時,計算出了下表所給出的函數(shù)值,則交點的橫坐標(biāo)在下列哪個區(qū)間內(nèi)( 。
x22.1252.252.3752.52.6252.752.8753
lgx0.3010.3270.3520.3760.3980.4190.4390.4590.477
$\frac{1}{x}$0.50.4710.4440.4210.4000.3810.3640.3480.333
A.(2.125,2,25)B.(2.75,2.875)C.(2.625,2.75)D.(2.5,2.625)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)Sn為等比數(shù)列{an}的前n項和,且8a3+a6=0,則$\frac{S_4}{S_2}$=( 。
A.-11B.-8C.5D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,a、b、c分別為角A、B、C所對的邊,若B=60°,b2=ac,則△ABC的形狀是( 。
A.直角三角形B.鈍角三角形
C.等腰非等邊三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=x2-x-2,x∈[-2,2],那么任取一點x0∈[-2,2],使f(x0)≤0的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)f(x)=x2-2ax-a2-$\frac{3}{4}$,若對任意的x∈[0,1],均有|f(x)|≤1,則實數(shù)a的取值范圍是-$\frac{1}{2}$≤a≤$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案