19.在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,若B=60°,b2=ac,則△ABC的形狀是(  )
A.直角三角形B.鈍角三角形
C.等腰非等邊三角形D.等邊三角形

分析 由余弦定理可得a=c,即可判斷出結(jié)論.

解答 解:由余弦定理可得:b2=a2+c2-2accos60°=ac,
a=c,
∴△ABC的形狀是等邊三角形.
故選:D.

點(diǎn)評(píng) 本題考查了余弦定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a>0,b>0,且a+b=2.
(1)求a•b的最大值;
(2)求$\frac{1}{a}+\frac{4}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.經(jīng)過兩點(diǎn)$A({-1,\sqrt{3}})$,$B({1,-\sqrt{3}})$的直線的傾斜角為(  )
A.120°B.150°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.證明:函數(shù)$f(x)=\frac{1}{{\sqrt{x}}}$在區(qū)間(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知p:x2-2x-3<0,q:x+2≥0,則p是q的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的通項(xiàng)an=n2-11n+10,則an的最小值是-20,Sn的最小值是-120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.正弦函數(shù)y=sinx的圖象上最高點(diǎn)和最低點(diǎn)之間的最短距離是(  )
A.2B.2$\sqrt{2}$C.$\sqrt{4+{π}^{2}}$D.2$\sqrt{1+{π}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.對(duì)任意實(shí)數(shù)x,y,都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,那么對(duì)定義域R上的函數(shù)f(x),下列結(jié)論正確的是( 。
A.f(x)是奇函數(shù),又是減函數(shù)B.f(x)是奇函數(shù),又是增函數(shù)
C.f(x)是偶函數(shù),又是減函數(shù)D.f(x)是偶函數(shù),又是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知n=∫${\;}_{0}^{2}$($\frac{2}{π}$$\sqrt{4-{x}^{2}}$+2x)dx,則二項(xiàng)式(x2-$\frac{2}{x}$)n的展開式中含x3的系數(shù)為-160(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案