2.已知函數(shù)f(x)=log2x,若f(a)+f(b)=2,則a+b的最小值是4.

分析 利用對(duì)數(shù)的運(yùn)算性質(zhì)可得ab=4,再利用基本不等式的性質(zhì)可得ab$≤(\frac{a+b}{2})^{2}$,即可得出.

解答 解:∵函數(shù)f(x)=log2x,f(a)+f(b)=2,
∴l(xiāng)og2a+log2b=2,
化為ab=4,
∴4=ab$≤(\frac{a+b}{2})^{2}$,
解得a+b≥4,當(dāng)且僅當(dāng)a=b=2時(shí)取等號(hào).
則a+b的最小值是4.
故答案為:4.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知F1(-c,0),F(xiàn)2(c,0)為橢圓$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P滿(mǎn)足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=2c2,則此橢圓離心率的取值范圍是(  )
A.[$\frac{1}{2}$,$\frac{\sqrt{3}}{3}$]B.(0,$\frac{\sqrt{2}}{2}$]C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{2}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)f(x)是一個(gè)三次函數(shù),f′(x)為其導(dǎo)函數(shù),如圖是函數(shù)y=x•f′(x)的圖象的一部分,則函數(shù)f(x)的極大值是( 。
A.f(-1)B.f(-2)C.f(1)D.f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和,若a3=-6,S1=S3,則公差d=-12; Sn的最大值為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若x,y∈R且滿(mǎn)足x+3y=2,則3x+27y+1的最小值是( 。
A.3$\root{3}{9}$B.1+2$\sqrt{2}$C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知在△ABC中,∠A、∠B、∠C所對(duì)的邊是a、b、c,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$且$\overrightarrow{GA}$•$\overrightarrow{GB}$=0,若(tanA+tanB)•tanC=mtanAtanB,則m的值為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,已知a=4,b=3,c=$\sqrt{13}$,則cosC=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.正四面體(即各條棱長(zhǎng)均相等的三棱錐)的棱長(zhǎng)為6,某學(xué)生畫(huà)出該正四面體的三視圖如下,其中有一個(gè)視圖是錯(cuò)誤的,則該視圖修改正確后對(duì)應(yīng)圖形的面積為6$\sqrt{6}$.該正四面體的體積為18$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若復(fù)數(shù)z滿(mǎn)足(3-4i)z=|4+3i|,則z的虛部為( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$iC.$\frac{4}{5}$iD.4

查看答案和解析>>

同步練習(xí)冊(cè)答案