A. | [0,$\frac{16}{25}$] | B. | [-$\frac{5}{2}$,2] | C. | [-$\frac{5}{2}$,$\frac{3}{2}$] | D. | [0,$\frac{32}{25}$] |
分析 記x=cosα,則 cos2β=-$\frac{5}{4}$x2+x≥0,解得0≤x≤$\frac{4}{5}$,把cos2α+cos2β=-$\frac{1}{4}$(x-2)2+1,故x=$\frac{4}{5}$時,cos2α+cos2β取最大值;x=0時,cos2α+cos2β取最小值,從而得到
cos2α+cos2β 的取值范圍,由2cos2α+cos2β+1=2(cos2α+cos2β)即可得解.
解答 解:記x=cosα,則 cos2β=-$\frac{5}{4}$x2+x≥0,解得0≤x≤$\frac{4}{5}$ (而不是0≤x≤1,此步非常關(guān)鍵,大部分同學(xué)都會在此處疏漏,導(dǎo)致答案錯誤).
∴cos2α+cos2β=x2-$\frac{5}{4}$x2+x=-$\frac{{x}^{2}}{4}$+x=-$\frac{1}{4}$(x-2)2+1,由單調(diào)性可知,
x=$\frac{4}{5}$時,cos2α+cos2β取得最大值為$\frac{16}{25}$;x=0時,cos2α+cos2β取得最小值為0,即cos2α+cos2β 的取值范圍是[0,$\frac{16}{25}$].
∵2cos2α+cos2β+1=2(cos2α+cos2β),
∴2cos2α+cos2β+1的取值范圍是:[0,$\frac{32}{25}$]
故選:D.
點評 本題主要考查三角函數(shù)的最值的求法,二次函數(shù)在閉區(qū)間上的最值的求法,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1] | B. | [1,3] | C. | [2,4] | D. | [3,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com