【題目】已知函數(shù),.
(Ⅰ)若是函數(shù)的一個(gè)極值點(diǎn),求實(shí)數(shù)的值及在內(nèi)的最小值;
(Ⅱ)當(dāng)時(shí),求證:函數(shù)存在唯一的極小值點(diǎn),且.
【答案】(Ⅰ);(Ⅱ)見解析
【解析】
(Ⅰ)由已知條件的導(dǎo)函數(shù),以及,從而求出實(shí)數(shù)的值,利用導(dǎo)數(shù)求出函數(shù)在內(nèi)的單調(diào)性,從而得到在內(nèi)的最小值
(Ⅱ)由題可得,令,要證函數(shù)存在唯一的極小值點(diǎn),即證只有唯一根,利用導(dǎo)數(shù)求出的單調(diào)區(qū)間與值域即可,且由零點(diǎn)定理可知,由,可得,代入中,利用導(dǎo)數(shù)求出在內(nèi)的最值即可證明。
(Ⅰ)由題可得:,則,
是函數(shù)的一個(gè)極值點(diǎn),
,即,解得:,經(jīng)檢驗(yàn),當(dāng)時(shí),是函數(shù)的一個(gè)極值點(diǎn);
;
當(dāng)時(shí),,令,解得:或,
當(dāng)時(shí),、的變化如下表:
所以當(dāng)時(shí),有最小值,
(Ⅱ)當(dāng)時(shí),,
令,,則,
由于恒成立,所以恒大于零,則在上單調(diào)遞增,
由于,,根據(jù)零點(diǎn)定理,可得存在唯一的,使得,
令,解得:,,當(dāng)或時(shí),,即的單調(diào)增區(qū)間為,,當(dāng)時(shí),,即的單調(diào)減區(qū)間為,
函數(shù)存在唯一的極小值點(diǎn),且,,則;
,
則,令,解得:或,
當(dāng)時(shí),,則在上單調(diào)遞減,則,,所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),,為曲線上的一動(dòng)點(diǎn).
(I)求動(dòng)點(diǎn)對(duì)應(yīng)的參數(shù)從變動(dòng)到時(shí),線段所掃過的圖形面積;
(Ⅱ)若直線與曲線的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得為線段的中點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若函數(shù)在處取得極值,求實(shí)數(shù)的值;
(2)在(1)的結(jié)論下,若關(guān)于的不等式,當(dāng)時(shí)恒成立,求的值;
(3)令,若關(guān)于的方程在內(nèi)至少有兩個(gè)解,求出實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小值及取到最小值時(shí)自變量x的集合;
(2)指出函數(shù)y=的圖象可以由函數(shù)y=sinx的圖象經(jīng)過哪些變換得到;
(3)當(dāng)x∈[0,m]時(shí),函數(shù)y=f(x)的值域?yàn)?/span>,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標(biāo)系中的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為參數(shù)).
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線與曲線有公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車“定速巡航”技術(shù)是用于控制汽車的定速行駛,當(dāng)汽車被設(shè)定為定速巡航狀態(tài)時(shí),電腦根據(jù)道路狀況和汽車的行駛阻力自動(dòng)控制供油量,使汽車始終保持在所設(shè)定的車速行駛,而無需司機(jī)操縱油門,從而減輕疲勞,促進(jìn)安全,節(jié)省燃料.某汽車公司為測量某型號(hào)汽車定速巡航狀態(tài)下的油耗情況,選擇一段長度為240km的平坦高速路段進(jìn)行測試.經(jīng)多次測試得到一輛汽車每小時(shí)耗油量F(單位:L)與速度v(單位:km/h)()的下列數(shù)據(jù):
v | 0 | 40 | 60 | 80 | 120 |
F | 0 | 10 | 20 |
為了描述汽車每小時(shí)耗油量與速度的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:
,,.
(1)請(qǐng)選出你認(rèn)為最符合實(shí)際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式.
(2)這輛車在該測試路段上以什么速度行駛才能使總耗油量最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,
(1)求的最小正周期和單調(diào)增區(qū)間
(2)求圖象的對(duì)稱軸的方程和對(duì)稱中心的坐標(biāo)
(3)在給出的直角坐標(biāo)系中,請(qǐng)畫出在區(qū)間上的圖象并求其值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P與兩定點(diǎn)A(-2,0),B(2,0)連線的斜率之積為-,記點(diǎn)P的軌跡為曲線C
(I)求曲線C的方程;
(II)若過點(diǎn)(-,0)的直線l與曲線C交于M,N兩點(diǎn),曲線C上是否存在點(diǎn)E使得四邊形OMEN為平行四邊形?若存在,求直線l的方程,若不存在,說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com