分析 由已知求出α的范圍,進(jìn)一步得到$\frac{α}{2}$的范圍,利用同角三角函數(shù)的基本關(guān)系式化簡(jiǎn),分類去絕對(duì)值后得答案.
解答 解:∵sinαcosα<0,∴α為第二或第四象限角,
∵sinαtanα<0,∴α為第二或第三象限角,
則α為第二象限角,∴$\frac{π}{2}+2kπ<α<π+2kπ$,k∈Z,
則$\frac{π}{4}+kπ<\frac{α}{2}<\frac{π}{2}+kπ,k∈Z$,
∴$\frac{α}{2}$為第一或第三象限角,
則$\sqrt{\frac{1-sin\frac{α}{2}}{1+sin\frac{α}{2}}}$+$\sqrt{\frac{1+sin\frac{α}{2}}{1-sin\frac{α}{2}}}$=$\sqrt{\frac{(1-sin\frac{α}{2})^{2}}{co{s}^{2}\frac{α}{2}}}+\sqrt{\frac{(1+sin\frac{α}{2})^{2}}{co{s}^{2}\frac{α}{2}}}$
=$\frac{1-sin\frac{α}{2}}{|cos\frac{α}{2}|}+\frac{1+sin\frac{α}{2}}{|cos\frac{α}{2}|}$.
當(dāng)$\frac{α}{2}$為第一象限角時(shí),原式=$\frac{1-sin\frac{α}{2}+1+sin\frac{α}{2}}{cos\frac{α}{2}}=\frac{2}{cos\frac{α}{2}}$;
當(dāng)$\frac{α}{2}$為第三象限角時(shí),原式=$\frac{1-sin\frac{α}{2}+1+sin\frac{α}{2}}{-cos\frac{α}{2}}=-\frac{2}{cos\frac{α}{2}}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)與求值,關(guān)鍵是同角三角函數(shù)基本關(guān)系式的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 等邊三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com