19.函數(shù)y=-$\frac{1}{3}$cos(2x-$\frac{π}{4}}$)的單調(diào)增區(qū)間是[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

分析 利用余弦函數(shù)的單調(diào)性,求得函數(shù)y=-$\frac{1}{3}$cos(2x-$\frac{π}{4}}$)的單調(diào)增區(qū)間.

解答 解:y=-$\frac{1}{3}$cos(2x-$\frac{π}{4}}$)的單調(diào)增區(qū)間,即函數(shù)y=$\frac{1}{3}$cos(2x-$\frac{π}{4}}$)的減區(qū)間,
令2kπ≤2x-$\frac{π}{4}$≤2kπ+π,求得kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,
故函數(shù)的增區(qū)間為[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z,
故答案為:[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

點(diǎn)評 本題主要考查余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知x,y,z∈R,且x+3y-2z=3,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=(ax-2)ex在x=1處取得極值.
(1)求a的值;
(2)求證:對任意x1、x2∈[0,2],都有|f(x1)-f(x2)|≤e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.二項(xiàng)式${(3{x^2}-\frac{2}{{\root{3}{x}}})^7}$展開式中含有常數(shù)項(xiàng),則常數(shù)項(xiàng)是第(  )項(xiàng).
A.6B.5C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}中,且a4+a12=10,則前15項(xiàng)和S15=( 。
A.15B.20C.21D.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在平行四邊形ABCD中,AB=4,AD=2,∠BAD=60°,E,F(xiàn)分別為AB,BC上的點(diǎn),且AE=2EB,CF=2FB.
(1)若$\overrightarrow{DE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,求x,y的值;
(2)求$\overrightarrow{AB$•$\overrightarrow{DE}$的值;
(3)求cos∠BEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.當(dāng)x∈(0,+∞)時(shí),函數(shù)f(x)=$\frac{x}{e^x}$的值域?yàn)?(0,\frac{1}{e}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知直線l經(jīng)過直線x-y+2=0和2x+y+1=0的交點(diǎn),且直線l與直線x-3y+2=0平行,則直線l的方程為x-3y+4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}的前n項(xiàng)和記為Sn,若a4+a6+a8=15,則S11的值為( 。
A.55B.$\frac{55}{2}$C.165D.$\frac{165}{2}$

查看答案和解析>>

同步練習(xí)冊答案