17.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=3an+1-3,則an=(  )
A.${({\frac{4}{3}})^{n-1}}$B.${({\frac{3}{4}})^{n-1}}$C.3n-1D.${({\frac{1}{3}})^{n-1}}$

分析 由已知數(shù)列遞推式可得Sn-1=3an-3(n≥2).與原遞推式作差后可得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{4}{3}$(n≥2).驗(yàn)證$\frac{{a}_{2}}{{a}_{1}}=\frac{4}{3}$,可得數(shù)列{an}構(gòu)成以1為首項(xiàng),以$\frac{4}{3}$為公比的等比數(shù)列,由此求得an

解答 解:由Sn=3an+1-3,得
Sn-1=3an-3(n≥2).
兩式作差可得an=3an+1-3an,
即$\frac{{a}_{n+1}}{{a}_{n}}=\frac{4}{3}$(n≥2).
∵a1=1,Sn=3an+1-3,
∴${a}_{2}=\frac{4}{3}$,則$\frac{{a}_{2}}{{a}_{1}}=\frac{4}{3}$.
∴數(shù)列{an}構(gòu)成以1為首項(xiàng),以$\frac{4}{3}$為公比的等比數(shù)列,
則${a}_{n}=(\frac{4}{3})^{n-1}$.
故選:A.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了等比數(shù)列通項(xiàng)公式的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(cosx,$\sqrt{3}$cosx),x∈R,函數(shù)f(x)=$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)$.
(1)求函數(shù)f(x)的最小正周期;
(2)△ABC中邊a、b、c所對(duì)的角為A、B、C,若acosB+bcosA=2ccosC,c=$\sqrt{3}$,當(dāng)f($\frac{B}{2}$)取最大值時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.定義在R的奇函數(shù)f(x),當(dāng)x<0時(shí),f(x)=-x2+x,則x>0時(shí),f(x)等于( 。
A.x2+xB.-x2+xC.-x2-xD.x2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列賦值語(yǔ)句正確的是( 。
A.3=MB.a+1=MC.M-1=aD.M=a+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)集合A={x|x2-2x-8<0,x∈Z},
(1)從集合A中任取兩個(gè)元素a,b且a•b≠0,寫(xiě)出全部可能的基本結(jié)果;  
(2)求方程$\frac{x^2}{a}$+$\frac{y^2}$=1表示焦點(diǎn)在x軸上的橢圓的概率;   
(3)若A={x|x2-2x-8<0},求方程$\frac{x^2}{a}$+$\frac{y^2}$=1表示焦點(diǎn)在x軸上的橢圓的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列結(jié)論正確的是( 。
A.當(dāng)x>0且x≠1時(shí),lgx+$\frac{1}{lgx}$≥2
B.當(dāng)x>0時(shí),$\sqrt{x}+\frac{1}{{\sqrt{x}}}$≥2
C.當(dāng)x≥2時(shí),x+$\frac{1}{x}$的最小值為2
D.當(dāng)$x∈(0,\frac{π}{2}]$時(shí),f(x)=sinx+$\frac{4}{sinx}$的最小值是4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=log2x+3的值域是(  )
A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左頂點(diǎn)為A,直線l與橢圓C分別相交于M,N兩點(diǎn).
(Ⅰ)若直線l過(guò)橢圓C右焦點(diǎn)且$\overrightarrow{AM}$•$\overrightarrow{AN}$=6,求直線l的方程;
(Ⅱ)若直線l垂直于x軸,P是橢圓上不與橢圓頂點(diǎn)重合的任意一點(diǎn),直線MP,NP分別交x軸于點(diǎn)E(m,0),F(xiàn)(n,0),探究m•n是否為定值,若為定值,求出該定值,若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.p:x2-3x+2≤0成立的一個(gè)必要不充分條件是(  )
A.x>1B.x≥1C.1≤x≤2D.1<x<2

查看答案和解析>>

同步練習(xí)冊(cè)答案