5.下列賦值語句正確的是( 。
A.3=MB.a+1=MC.M-1=aD.M=a+1

分析 根據(jù)賦值語句的功能,我們逐一分析四個(gè)答案中四個(gè)賦值語句,根據(jù)賦值號(hào)左邊只能是變量,右邊可以是任意表達(dá)式,即可得到答案.

解答 解:3=M中,賦值號(hào)的左邊是表達(dá)式,故A錯(cuò)誤;
a+1=M中,賦值號(hào)的左邊是表達(dá)式,故B錯(cuò)誤;
M-1=a中,賦值號(hào)的左邊是表達(dá)式,故C錯(cuò)誤;
只有D:M=a+1是正確的賦值語句.
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是賦值語句,其中熟練掌握賦值語句的功能和格式,是解答本題的關(guān)鍵.屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)設(shè)點(diǎn)P(m,0),若直線l與曲線C交于A,B兩點(diǎn),且|PA|•|PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.過直線x+y-2$\sqrt{2}$=0上點(diǎn)P作圓x2+y2=1的兩條切線,若兩條切線的夾角是60°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在△ABC中,∠C=90°,AC=3,BC=4,AB邊(包括端點(diǎn))上一點(diǎn)F,BC邊(包括端點(diǎn))上一點(diǎn)E滿足線段EF分△ABC的面積為相等的兩部分;
(1)設(shè)BF=x,EF=y,將y表示為x的函數(shù);
(2)求線段EF長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\frac{2i}{1-i}+ai=b-2i(a,b∈R)$.求$\int_{\;\;a}^{\;b}{(3{x^2}}-2)dx$=22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.條件p:|x+1|>1,條件$q:\frac{1}{3-x}>1$,則¬q是¬p的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=3an+1-3,則an=( 。
A.${({\frac{4}{3}})^{n-1}}$B.${({\frac{3}{4}})^{n-1}}$C.3n-1D.${({\frac{1}{3}})^{n-1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=ax-1+1(a>0且a≠1)的反函數(shù)恒過定點(diǎn)( 。
A.(0,2)B.(2,0)C.(1,2)D.(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=a2x2(a>0),$g(x)=\sqrt{9-{{(x-b)}^2}}$.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為$\sqrt{2}$,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)$a=\frac{{\sqrt{2}}}{2}$,$b=\frac{{5\sqrt{3}}}{2}$,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案