13.直線kx-y=k-1與直線y=x+2-2k的交點(diǎn)在第二象限內(nèi),則實(shí)數(shù)k的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.(-$\frac{1}{2}$,0)D.(-∞,$\frac{1}{2}$]

分析 聯(lián)立直線kx-y=k-1與直線y=x+2-2k,解得x=-1,y=1-2k,利用直線kx-y=k-1與直線y=x+2-2k的交點(diǎn)在第二象限內(nèi),可得1-2k>0,解出即可.

解答 解:聯(lián)立直線kx-y=k-1與直線y=x+2-2k,解得x=-1,y=1-2k,
∵直線kx-y=k-1與直線y=x+2-2k的交點(diǎn)在第二象限內(nèi),
∴1-2k>0,
解得k<$\frac{1}{2}$.
故選:B.

點(diǎn)評 本題考查了直線的交點(diǎn)、不等式的解法,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直角三角形的兩直角邊長分別為2和4,求兩直角邊上的中線所夾的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若等比數(shù)列{an}的前n項(xiàng)和為Sn,且S2=3,S4=15,則S12=4095.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二次函數(shù)f(x)滿足:f(0)=m-4,f(m)=-m2+m-4,且對任意的實(shí)數(shù)t,都有f(-t)=f(2m+t).
(1)若函數(shù)f(x)在區(qū)間[-1,3]上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
(2)若關(guān)于x的不等式f(x)<0的解集為(-1,3),求實(shí)數(shù)m的取值;
(3)若函數(shù)f(x)在區(qū)間[0,2]上的最小值為-$\frac{19}{4}$,求實(shí)數(shù)m的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=4m(cos2(x+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$sin2x)+n-2m(m≠0).
(1)求函數(shù)f(x)的最小正周期T;
(2)若m=1,函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求n;
(3)若n=1,函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=tan(2x-$\frac{π}{4}$)+1,x∈[0,π],使f(x)為正值的x的集合為[0,$\frac{3π}{8}$)、或($\frac{π}{2}$,$\frac{7π}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lg(x+$\sqrt{{x}^{2}+1}$).
(1)求f(x)的定義域;
(2)求f(x)的反函數(shù)f-1(x);
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若cosα=$\frac{1}{5}$,α∈(0,$\frac{π}{2}$),則cos(α-$\frac{π}{3}$)=$\frac{1+6\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知兩向量$\overrightarrow{a}$=(4,3)與2$\overrightarrow{a}$+$\overrightarrow$=(3,18),求向量$\overrightarrow$的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案