4.若等比數(shù)列{an}的前n項(xiàng)和為Sn,且S2=3,S4=15,則S12=4095.

分析 利用等比數(shù)列的通項(xiàng)公式求解.

解答 解:∵等比數(shù)列{an}的前n項(xiàng)和為Sn,且S2=3,S4=15,
∴$\left\{\begin{array}{l}{\frac{{a}_{1}(1-{q}^{2})}{1-q}=3}\\{\frac{{a}_{1}(1-{q}^{4})}{1-q}=15}\end{array}\right.$,解得q2=4,$\frac{{a}_{1}}{1-q}$=-1,
∴S12=$\frac{{a}_{1}(1-{q}^{12})}{1-q}$=-1×[1-(q26]=-(1-4096)=4095.
故答案為:4095.

點(diǎn)評(píng) 本題考查等比數(shù)列的前12項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某上市股票在30天內(nèi)每股的交易價(jià)格P(元)與時(shí)間t(天)組成有序數(shù)對(duì)(t,P),點(diǎn)(t,P)落在圖中的兩條線段上(如圖).該股票在30天內(nèi)(包括第30天)的日交易量Q(萬股)與時(shí)間t(天)的函數(shù)關(guān)系式為Q=40-t(0≤t≤30且t∈N).
(1)根據(jù)提供的圖象,求出該種股票每股的交易價(jià)格P(元)與時(shí)間t(天)所滿足的函數(shù)關(guān)系式;
(2)用y(萬元)表示該股票日交易額(日交易額=日交易量×每股的交易價(jià)格),寫出y關(guān)于t的函數(shù)關(guān)系式,并求出這30天中第幾天日交易額最大,最大值為多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=cos(2x-$\frac{π}{4}$)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.與直線2x+y+1=0的距離為$\frac{\sqrt{5}}{5}$的直線方程為2x+y=0或2x+y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x>1,則$\frac{4}{x-1}$+x的最小值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知A、B、C、D四點(diǎn)在半徑為$\frac{5\sqrt{2}}{2}$的球面上,且AC=BD=5,AD=BC=$\sqrt{41}$,AB=CD,則三棱錐D-ABC的體積是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓C:x2+y2+2x-4y+m=0與y軸相切.
(1)求m的值;
(2)若圓C的切線在x軸和y軸上的截距相等,求該切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線kx-y=k-1與直線y=x+2-2k的交點(diǎn)在第二象限內(nèi),則實(shí)數(shù)k的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.(-$\frac{1}{2}$,0)D.(-∞,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若函數(shù)f(x)=a-bcosx的最大值為$\frac{5}{2}$,最小值為-$\frac{1}{2}$,求函數(shù)g(x)=-4asinbx的最值和最小正周期.

查看答案和解析>>

同步練習(xí)冊(cè)答案