分析 作出圖形,由勾股定理及重心性質(zhì)求出△BGD的三邊,再由余弦定理即可求得答案.
解答 解:如圖所示:BC=2,AC=4,
則BD=CD=1,CE=2,AD=$\sqrt{{1}^{2}+{4}^{2}}$=$\sqrt{17}$,
BE=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
令A(yù)D,BE交于點(diǎn)G,則:
GD=$\frac{1}{3}$AD=$\frac{\sqrt{17}}{3}$,GB=$\frac{2}{3}$BE=$\frac{4}{3}\sqrt{2}$,
在△BGD中,cos∠BGD=$\frac{{GD}^{2}+{GB}^{2}-{BD}^{2}}{2GD•GB}$=$\frac{\frac{40}{9}}{\frac{136\sqrt{2}}{9}}$=$\frac{5\sqrt{2}}{34}$
點(diǎn)評 該題考查余弦定理及其應(yīng)用,考查三角形的重心性質(zhì),屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | 4 | C. | $\sqrt{17}$ | D. | $\sqrt{19}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{2}$) | B. | (-∞,$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,0) | D. | (-∞,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com