11.若函數(shù)f(x)滿足f′(x)-f(x)=2xex,f(0)=1,其中f′(x)為f(x)的導(dǎo)函數(shù),則當(dāng)x>0時(shí),$\frac{f′(x)}{f(x)}$的最大值為( 。
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

分析 利用函數(shù)f(x)滿足f′(x)-f(x)=2xex,f(0)=1,求出f(x),再代入利用基本不等式即可得出結(jié)論.

解答 解:由題意,($\frac{f(x)}{{e}^{x}}$)′=2x,
∴$\frac{f(x)}{{e}^{x}}$=x2+b,
∴f(x)=(x2+b)ex
∵f(0)=1,∴b=1,
∴f(x)=(x2+1)ex,
f′(x)=(x+1)2ex,
∴當(dāng)x>0時(shí),$\frac{f′(x)}{f(x)}$=1+$\frac{2x}{{x}^{2}+1}$≤2,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
∴當(dāng)x>0時(shí),$\frac{f′(x)}{f(x)}$的最大值為2.
故選:B.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查基本不等式,考查學(xué)生的計(jì)算能力,確定f(x)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an}的首項(xiàng)a1=1,且an=2an-1+3(n≥2),則an=2n+1-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點(diǎn)E是正方形ABCD的邊AD上一動(dòng)點(diǎn)(端點(diǎn)除外),現(xiàn)將△ABE沿BE所在直線翻折成△A′BE,并連結(jié)A′C,A′D.記二面角A′-BE-C的大小為α(0<α<π).則(  )
A.存在α,使得BA′⊥面A′DEB.存在α,使得BA′⊥面A′CD
C.存在α,使得EA′⊥面A′CDD.存在α,使得EA′⊥面A′BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.正方體ABCD-A1B1C1D1的棱長(zhǎng)為3,點(diǎn)P是CD上一點(diǎn),且DP=1,過點(diǎn)A1,C1,P三點(diǎn)的平面交底面ABCD于PQ,點(diǎn)Q在直線BC上,則PQ=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖所示,建立空間直角坐標(biāo)系Dxyz,已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M是正方體對(duì)角線D1B的中點(diǎn),點(diǎn)N在棱CC1上.
(1)當(dāng)2|C1N|=|NC|時(shí),求|MN|;
(2)當(dāng)點(diǎn)N在棱CC1上移動(dòng)時(shí),求|MN|的最小值并求此時(shí)的N點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)(1,$\frac{\sqrt{2}}{2}$),且離心率為$\frac{\sqrt{2}}{2}$,過點(diǎn)P的動(dòng)直線l與橢圓相交于A,B兩點(diǎn).
(1)求橢圓E的方程;
(2)若橢圓E的右焦點(diǎn)是P,其右準(zhǔn)線與x軸交于點(diǎn)Q,直線AQ的斜率為k1,直線BQ的斜率為k2,求證:k1+k2=0;
(3)設(shè)點(diǎn)P(t,0)是橢圓E的長(zhǎng)軸上某一點(diǎn)(不為長(zhǎng)軸頂點(diǎn)及坐標(biāo)原點(diǎn)),是否存在與點(diǎn)P不同的定點(diǎn)Q,使得$\frac{QA}{QB}$=$\frac{PA}{PB}$恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,圓O為△ABC的外接圓,D為$\widehat{AC}$的中點(diǎn),BD交AC于E.
(Ⅰ)證明:AD2=DE•DB;
(Ⅱ)若AD∥BC,DE=2EB,AD=$\sqrt{6}$,求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(c,0),AB為過橢圓E中心的弦,則△AFB的面積最大值是bc;若點(diǎn)F關(guān)于直y=$\frac{c}$x的對(duì)稱點(diǎn)Q在橢圓上,則橢圓的離心率是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:關(guān)于x的方程x2-ax+a+3=0有實(shí)數(shù)根,命題q:m-1≤a≤m+1.
(Ⅰ) 若¬p是真命題,求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若p是q的必要非充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案