【題目】在平面直角坐標(biāo)系xOy中,已知A(﹣20),B Mx,y)是曲線C上的動點,且直線AMBM的斜率之積等于.

1)求曲線C方程;

2)過D2,0)的直線llx軸不垂直)與曲線C交于EF兩點,點F關(guān)于x軸的對稱點為F,直線EFx軸交于點P,求PEF的面積的取值范圍.

【答案】1y≠0);(2)(0,4

【解析】

1)利用斜率公式由題意可得:,化簡即可得到曲線方程;(2)聯(lián)立直線與橢圓方程,利用根與系數(shù)的關(guān)系求出點的坐標(biāo),在求出的面積,利用換元法得到,再令利用導(dǎo)數(shù)得到,從而得出的面積的取值范圍.

1)由題意可得:,

化簡得:,

故曲線C方程為:y≠0);

2)設(shè)Ex1,y1),Fx2,y2),由題意可知直線l的斜率存在且不為零,

設(shè)直線l的方程為xmy+2m≠0),代入化簡并整理得:(m2+4y2+4my80,

y1+y2,y1y2,

由題意可知,F'x2,﹣y2)且x1x2,∴直線EF'的方程為yy1xx1),

y0得,xx126,

∴點P06),

SPEF2,

t,則t2SPEF,

ft)=t在(2+∞)上單調(diào)遞增,∴ft)>3

0SPEF4,

∴△PEF的面積的取值范圍為(0,4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列三個命題:(1)如果一個平面內(nèi)有無數(shù)條直線平行于另一個平面,則這兩個平面平行;(2)一個平面內(nèi)的任意一條直線都與另一個平面不相交,則這兩個平面平行;(3)一個平面內(nèi)有不共線的三點到另一個平面的距離相等,則這兩個平面平行;其中正確命題的個數(shù)是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓柱的底面圓的半徑,圓柱的表面積為;點在底面圓上,且直線與下底面所成的角的大小為,

(1)求點到平面的距離;

(2)求二面角的大小(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面且邊長為的菱形,側(cè)面為正三角形,其所在平面垂直于底面,若的中點,的中點.

1)求證:平面

2)求證:;

3)在棱上是否存在一點,使平面平面,若存在,確定點的位置;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD為矩形,O,E分別為ADPB的中點,平面平面ABCD,,.

1)求證:平面PCD

2)求證:平面PCD;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作一直線與雙曲線相交于兩點,若中點,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于概率和統(tǒng)計的幾種說法:①10名工人某天生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,1517,17,16,14,12,設(shè)其平均數(shù)為,中位數(shù)為,眾數(shù)為,則,的大小關(guān)系為;②樣本4,21,0-2的標(biāo)準(zhǔn)差是2;③在面積為內(nèi)任選一點,則隨機事件的面積小于的概率為;④從寫有0,1,2,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是.其中正確說法的序號有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為.

1)求橢圓的方程;

2)設(shè)點在橢圓上,且異于橢圓的上、下頂點,點為直線軸的交點,點軸的負(fù)半軸上.若為原點),且,求證:直線的斜率與直線MN的斜率之積為定值.

查看答案和解析>>

同步練習(xí)冊答案