17.已知等差數(shù)列{an}中,a2=1,a6=21,則a4=( 。
A.22B.16C.11D.5

分析 根據(jù)等差數(shù)列{an}中,a2,a4,a6成等差數(shù)列,利用等差中項即可求出結(jié)果.

解答 解:等差數(shù)列{an}中,a2=1,a6=21,
∴2a4=a2+a6=1+21=22
∴a4=11.
故選:C.

點評 本題考查了等差數(shù)列的定義與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x0∈R,x02-2x0+3≤0的否定是?x∈R,x2-2x+3>0,命題q:雙曲線$\frac{{x}^{2}}{4}$-y2=1的離心率為2,則下列命題中為真命題的是(  )
A.p∨qB.¬p∧qC.¬p∨qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x3+ax2-x+c(x∈R),下列結(jié)論錯誤的是( 。
A.函數(shù)f(x)一定存在極大值和極小值
B.函數(shù)f(x)在點(x0,f(x0))(x0∈R)處的切線與f(x)的圖象必有兩個不同的公共點
C.函數(shù)f(x)的圖象是中心對稱圖形
D.若函數(shù)f(x)在(-8,x1),(x2,+8)上是增函數(shù),則x2-x1=$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}是等差數(shù)列,其前n項和為Sn,且a3=6,S3=12,設(shè)${b_n}={2^{a_n}}$.
(1)求an;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)(1+x)n=a0+a1x+a2x2+…+anxn,若a1+a2+…+an=63,則展開式中系數(shù)最大項是( 。
A.20B.20x3C.105D.105x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.小明和爸爸媽媽、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與小明相鄰,則不同的坐法總數(shù)為84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知$\overrightarrow{AM}=α\overrightarrow{AB}+β\overrightarrow{AC}$,則△ABM 與△ACM 的面積的比值為β:α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.?dāng)?shù)列{an}滿足:an=$\left\{\begin{array}{l}{(3-a)n-3,}&{n≤7}\\{{a}^{{n-6}_{,}}}&{n>7}\end{array}\right.$,且{an}是遞增數(shù)列,則實數(shù)a的取值范圍是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線x=$\frac{π}{2}$,x=$\frac{3π}{2}$,y=0及曲線y=cosx所圍成圖形的面積是( 。
A.2B.3C.πD.

查看答案和解析>>

同步練習(xí)冊答案