3.已知O為△ABC內(nèi)一點(diǎn),且$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,則△AOC與△ABC的面積之比是$\frac{2}{5}$.

分析 作圖,從而可得$\overrightarrow{OF}$=-4$\overrightarrow{OD}$,從而解得.

解答 解:作圖如右圖,
∵$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴$\overrightarrow{OA}$+$\overrightarrow{OC}$=-4($\overrightarrow{OB}$+$\overrightarrow{OC}$),
∵$\overrightarrow{OA}$+$\overrightarrow{OC}$=2$\overrightarrow{OF}$,$\overrightarrow{OB}$+$\overrightarrow{OC}$=2$\overrightarrow{OD}$,
∴$\overrightarrow{OF}$=-4$\overrightarrow{OD}$,
設(shè)O到AC的距離為d,O到DE的距離為e,
則B到AC的距離為2(d+e),
∵$\overrightarrow{OF}$=-4$\overrightarrow{OD}$,
∴$\fracak4i6qa{e}$=4,
故$\fracq6m448u{2(d+e)}$=$\frac{2}{5}$,
故△AOC與△ABC的面積之比是$\frac{2}{5}$.
故答案為:$\frac{2}{5}$.

點(diǎn)評 本題考查了平面向量的線性運(yùn)算的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列各式中,最小值為2的是( 。
A.$\frac{x}{y}+\frac{y}{x}$B.$\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$C.5x+5-xD.tanx+cotx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=cos($\frac{π}{4}$-2x)的單調(diào)遞減區(qū)間是( 。
A.[$\frac{π}{8}$+2kπ,$\frac{5π}{8}$+2kπ](k∈Z)B.[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ](k∈Z)
C.[-$\frac{3π}{8}$+2kπ,$\frac{π}{8}$+2kπ](k∈Z)D.[-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè) $\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$ 是任意的非零向量,且相互不共線,有下列命題:①($\overrightarrow{a}$•$\overrightarrow$)$\overrightarrow{c}$-($\overrightarrow{c}$•$\overrightarrow{a}$)$\overrightarrow$=0②|$\overrightarrow{a}$|-|$\overrightarrow$|<|$\overrightarrow{a}$-$\overrightarrow$|③($\overrightarrow$•$\overrightarrow{a}$)$\overrightarrow{c}$-($\overrightarrow{c}$•$\overrightarrow{a}$)$\overrightarrow$與$\overrightarrow{c}$共線 ④(3$\overrightarrow{a}$+2$\overrightarrow$)•(3$\overrightarrow{a}$-2$\overrightarrow$)=9|$\overrightarrow{a}$|2-4|$\overrightarrow$|2其中正確的是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在四棱錐P-ABCD中,底面ABCD是正方形,AP⊥PD,側(cè)面PAD⊥底面ABCD,點(diǎn)E、F分別為PC、BD的中點(diǎn).
求證:(1)平面PDC⊥平面PAD;
(2)EF⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知離心率為$\frac{1}{2}$的橢圓C的中心在原點(diǎn)O,過橢圓C右焦點(diǎn)且垂直于x軸的直線與橢圓C相交于A,B兩點(diǎn),|AB|=3.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線l:y=kx+m與橢圓C相交于P,Q兩點(diǎn),且|$\overrightarrow{OP}$+3$\overrightarrow{OQ}$|=|$\overrightarrow{OP}$-3$\overrightarrow{OQ}$|,橢圓C上一點(diǎn)M滿足:$\overrightarrow{OP}$+$\overrightarrow{OQ}$=λ$\overrightarrow{OM}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在圓C:(x-2)2+(y-2)2=8內(nèi),過點(diǎn)P(1,1)的最長的弦為AB,最短的弦為DE,則四邊形ADBE的面積為( 。
A.2$\sqrt{3}$B.4$\sqrt{3}$C.8$\sqrt{3}$D.16$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.己知冪函數(shù)y=f(x)的圖象過點(diǎn)(2,4),則f(log2$\frac{\sqrt{2}}{2}$)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>0且a≠1,f(x)+g(x)=ax-a-x+2,其中f(x)為R上的奇函數(shù),g(x)為R上的偶函數(shù),若g(2)=a,則f(2)的值為(  )
A.2B.1C.$\frac{17}{4}$D.$\frac{15}{4}$

查看答案和解析>>

同步練習(xí)冊答案