11.已知函數(shù)y=x2-$\frac{1}{x}$,x∈[1,3],求函數(shù)在區(qū)間上的最大值和最小值.

分析 求出原函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的符號(hào)判斷原函數(shù)在[1,3]上為增函數(shù),則函數(shù)的最值可求.

解答 解:由y=x2-$\frac{1}{x}$,得${y}^{′}=2x+\frac{1}{{x}^{2}}$,
當(dāng)x∈[1,3]時(shí),y′>0.
∴函數(shù)y=x2-$\frac{1}{x}$在x∈[1,3]上為增函數(shù),
∴$f(x)_{min}=f(1)=0,f(x)_{max}={3}^{2}-\frac{1}{3}=\frac{26}{3}$.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了函數(shù)最值的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.拋物線y2=2x的內(nèi)接△ABC的三條邊所在直線與拋物線x2=2y均相切,設(shè)A,B兩點(diǎn)的縱坐標(biāo)分別是a,b,則C點(diǎn)的縱坐標(biāo)為( 。
A.a+bB.-a-bC.2a+2bD.-2a-2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某三棱錐的三視圖如圖所示,則該三棱錐的各個(gè)面中,最大的面積是( 。
A.$\frac{{\sqrt{6}}}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=lnx-ax+1,且f(x)≤0恒成立,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2,g(x)=lnax(a>0)
(1)若不等式若不等式f(x)<g(x)解集為空集,求實(shí)數(shù)a的取值范圍;
(2)求證,$\frac{2^2-1}{ln2}$+$\frac{3^2-1}{ln3}$+…+$\frac{n^2-1}{lnn}$>2(n-1).(n≥2,n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=xlnx-ax,g(x)=-x2-2.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對(duì)一切x∈(0,+∞),f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知離心率e=$\frac{\sqrt{5}}{2}$的雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$右焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),以O(shè)F為直徑圓與雙曲線C的一條漸近線相交于O,A兩點(diǎn),若△AOF的面積為4,則a的值為( 。
A.2$\sqrt{2}$B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.7個(gè)人到7個(gè)地方去旅游,一人一個(gè)地方,甲不去A地,乙不去B地,丙不去C地,丁不去D地,共有多少種旅游方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(0,-2),一條漸近線的方程是x-y=0,則雙曲線C的方程為$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{2}$=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案