A. | $\frac{{\sqrt{6}}}{2}$ | B. | 1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
分析 根據(jù)幾何體的三視圖,得出該幾何體是直三棱錐,根據(jù)圖中的數(shù)據(jù),求出該三棱錐的4個(gè)面的面積,得出面積最大的三角形的面積.
解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是如圖所示的直三棱錐,
且側(cè)棱PA⊥底面ABC,
PA=1,AC=2,點(diǎn)B到AC的距離為1;
∴底面△ABC的面積為S1=$\frac{1}{2}$×2×1=1,
側(cè)面△PAB的面積為S2=$\frac{1}{2}$×$\sqrt{{1}^{2}{+1}^{2}}$×1=$\frac{\sqrt{2}}{2}$,
側(cè)面△PAC的面積為S3=$\frac{1}{2}$×2×1=1,
在側(cè)面△PBC中,BC=$\sqrt{2}$,PB=$\sqrt{{1}^{2}{+(\sqrt{2})}^{2}}$=$\sqrt{3}$,PC=$\sqrt{{1}^{2}{+2}^{2}}$=$\sqrt{5}$,
∴△PBC是Rt△,
∴△PBC的面積為S4=$\frac{1}{2}$×$\sqrt{2}$×$\sqrt{3}$=$\frac{\sqrt{6}}{2}$;
∴三棱錐P-ABC的所有面中,面積最大的是△PBC,為$\frac{\sqrt{6}}{2}$.
故選:A.
點(diǎn)評(píng) 本題考查了空間幾何體的三視圖的應(yīng)用問(wèn)題,也考查了空間中的位置關(guān)系與距離的計(jì)算問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 1 | D. | 1或$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com