4.f(x)是偶函數(shù)且在[0,+∞)上是減函數(shù),且f(log2x)>f(1),則x的取值范圍是(  )
A.($\frac{1}{2}$,1)B.(0,$\frac{1}{2}$)∪(1,+∞)C.($\frac{1}{2}$,2)D.(0,1)∪(2,+∞)

分析 利用偶函數(shù)在對稱區(qū)間上的單調(diào)性相反得到f(x)的單調(diào)性,利用單調(diào)性去掉抽象不等式的符號“f”,解不等式得到解集.

解答 解:∵y=f(x)是R上的偶函數(shù),
∴f(log2x)>f(1)可化為f(|log2x|)>f(1),
又f(x)在[0,+∞)上是減函數(shù),
∴|log2x|<1,
∴-1<log2x<1,
解得$\frac{1}{2}$<x<2,
故選:C.

點評 本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,偶函數(shù)在關(guān)于原點對稱的區(qū)間上的單調(diào)性相反;利用單調(diào)性可解抽象不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.與雙曲線$\frac{y^2}{4}-{x^2}$=1有共同的漸近線,且過點(2,2)的雙曲線標準方程為( 。
A.$\frac{y^2}{3}-\frac{x^2}{12}=1$B.$\frac{x^2}{3}-\frac{y^2}{12}=1$C.$\frac{y^2}{2}-\frac{x^2}{8}=1$D.$\frac{x^2}{2}-\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9有2條公切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)A={(x,y)|y=1+$\sqrt{4-{x}^{2}}$},B={(x,y)|y=k(x-2)+4},若A∩B中含有兩個元素,則實數(shù)k的取值范圍是($\frac{5}{12}$,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\vec a$=(1,2),$\vec b$=(-4,2),則$|{\overrightarrow a+\overrightarrow b}|$等于( 。
A.25B.5C.7D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{x}{1+|x|}$(x∈R),則下面的結(jié)論:
①該函數(shù)是奇函數(shù);      ②該函數(shù)值域為(-1,1);
③任取x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0; ④f(x)=x有三個根.
其中正確結(jié)論的序號為①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-4x+3,g(x)=mx+5-2m,
(1)求y=f(x)在區(qū)間[0,a](a>0)上的最小值
(2)若對任意的x1∈[1,4],都有x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-6x+8)的值域、單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.求由y=x2,y=2x,y=x圍成圖形的面積$\frac{7}{6}$.

查看答案和解析>>

同步練習(xí)冊答案