11.求arctan$\frac{1}{3}$+arctan$\frac{1}{5}$+arctan$\frac{1}{7}$+arctan$\frac{1}{8}$的值.

分析 設(shè)arctan$\frac{1}{3}$+arctan$\frac{1}{5}$=α,arctan$\frac{1}{7}$+arctan$\frac{1}{8}$=β,由兩角和的正切公式求得tanα、tanβ 的值,可得據(jù)tan(α+β)的值,從而求得α+β的值.

解答 解:設(shè)arctan$\frac{1}{3}$+arctan$\frac{1}{5}$=α,arctan$\frac{1}{7}$+arctan$\frac{1}{8}$=β,
則tanα=$\frac{tan(arctan\frac{1}{3})+tan(arctan\frac{1}{5})}{1-tan(arctan\frac{1}{3})•tan(arctan\frac{1}{5})}$=$\frac{\frac{1}{3}+\frac{1}{5}}{1-\frac{1}{3}•\frac{1}{5}}$=$\frac{4}{7}$,∴α∈(0,$\frac{π}{4}$).
同理求得,tanβ=$\frac{3}{11}$,β∈(0,$\frac{π}{4}$).
再根據(jù)tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=1,可得α+β=$\frac{π}{4}$.

點評 本題主要考查反正切函數(shù)的定義,兩角和的正切公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若冪函數(shù)y=mxa的圖象經(jīng)過點($\frac{1}{4}$,$\frac{1}{2}$),則m•a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線ax+2y-1=0與直線(a-4)x-ay+1=0垂直,則實數(shù)a的值為( 。
A.0B.-4或2C.0或6D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.4名男歌手和2名女歌手聯(lián)合舉行一場音樂會,出場順序要求兩名女歌手之間恰有一名男歌手,共有出場方案的種數(shù)是192.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(coaα,sinα),且$\overrightarrow{a}•\overrightarrow$=-$\sqrt{5}$,則tanα=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=x3-ax2+2bx+1的導(dǎo)函數(shù)為f′(x),若函數(shù)f′(x)的圖象關(guān)于直線x=$\frac{2}{3}$對稱,且當(dāng)x∈[1,π]時,恒有f(x)≥1,則實數(shù)b的取值范圍為( 。
A.($\frac{1}{2}$,+∞)B.[$\frac{1}{2}$,1]C.(-∞,$\frac{1}{2}$]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.有三個盒子,分別裝有不同顏色的紅色小球6個,白色小球5個,黃色小球4個.
(1)從盒子里任取1個小球,有多少種不同取法?
(2)從盒子里任取紅、白、黃小球各一個,有多少種不同取法?
(3)從盒子里任取兩球,且兩球的顏色不同,有多少種不同取法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若向量$\overrightarrow{{e}_{1}}$和$\overrightarrow{{e}_{2}}$是一組基底,且(k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)∥($\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$),求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=-x2-mx+n(m,n∈R).
(1)當(dāng)m=3,n=1時,求不等式f(x)>3的解集;
(2)若函數(shù)y=f(x)的兩個零點分別在區(qū)間(-1,2)和(2,3)內(nèi),求m+2n的取值范圍;
(3)設(shè)h(x)=f(x)+ax2(a∈R),x1,x2是方程h(x)=0的兩個不等實根,若f(-2)=-4,且h(-1)•h(1)≤0,證明:當(dāng)m=a-1,時,|x1-x2|取得最大值.

查看答案和解析>>

同步練習(xí)冊答案