5.函數(shù)y=sin(2x-$\frac{π}{3}$)-sin2x的單調(diào)遞增區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

分析 由條件利用兩角和差的正弦公式化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性求得函數(shù)的增區(qū)間.

解答 解:函數(shù)y=sin(2x-$\frac{π}{3}$)-sin2x=-$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x=-sin(2x+$\frac{π}{3}$),
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,
可得函數(shù)的增區(qū)間為[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,
故答案為:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

點(diǎn)評(píng) 本題主要考查兩角和差的正弦公式,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-t}\\{y=3+2t}\end{array}\right.$(t是參數(shù)),以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程是ρ=4cos(θ-$\frac{π}{2}$).
(1)求圓C的直角坐標(biāo)方程;
(2)已知點(diǎn)P的直角坐標(biāo)為(2,1)直線l與圓C交于A,B兩點(diǎn),求||PA|-|PB||

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若x軸的正半軸上的點(diǎn)M到原點(diǎn)的距離與到點(diǎn)(5,-3)的距離相等,則M點(diǎn)的坐標(biāo)是(  )
A.(1,0)B.($\frac{3}{2}$,0)C.($\frac{17}{5}$,0)D.(±$\frac{17}{5}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,則f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+…+f($\frac{2014}{2015}$)=1007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)A(5,3),B(-1,-5).過(guò)線段AB的中點(diǎn)且傾斜角為120°的直線方程(  )
A.y-1=-$\sqrt{3}$(x-2)B.y-1=-$\frac{1}{2}$(x+2)C.y+1=-$\sqrt{3}$(x-2)D.y+1=-$\frac{1}{2}$(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=2,則$\overrightarrow{a}$•$\overrightarrow{c}$=(  )
A.2$\sqrt{3}$B.-6C.6D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知直線l的傾斜角是120°,則這條直線的一個(gè)法向量為($\sqrt{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.平面內(nèi)有向量$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}$=(5,1),點(diǎn)M(2x,x)
(1)當(dāng)$\overrightarrow{MA}$$•\overrightarrow{MB}$取最小值時(shí),求$\overrightarrow{OM}$的坐標(biāo);
(2)當(dāng)點(diǎn)M滿足(1)的條件和結(jié)論時(shí),求cos∠AMB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)y=$\frac{1}{\sqrt{3}-tanx}$的定義域?yàn)椋?$\frac{π}{2}$+kπ,$\frac{π}{3}$+kπ)∪($\frac{π}{3}$+kπ,$\frac{π}{2}$+kπ),k∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案