5.若直線y=x+b與曲線x2-4x+y2-6y+9=0(y≤3)有公共點(diǎn),則b的取值范圍是( 。
A.[-1,1+2$\sqrt{2}$]B.[1-2$\sqrt{2}$,1+2$\sqrt{2}$]C.[1-2$\sqrt{2}$,3]D.[1-$\sqrt{2}$,3]

分析 曲線表示以(2,3)為圓心、半徑等于2的半圓,當(dāng)半圓和直線y=x+b相切時(shí),求得b的值;當(dāng)直線y=x+b經(jīng)過點(diǎn)(0,3)時(shí),求得b的值,數(shù)形結(jié)合求得b的范圍.

解答 解:曲線x2-4x+y2-6y+9=0,即(x-2)2+(y-3)2 =4 (y≤3),
表示以(2,3)為圓心、半徑等于2的半圓,
如圖所示:當(dāng)半圓和直線y=x+b相切時(shí),由$\frac{|2-3+b|}{\sqrt{2}}$=2,
求得b=1-2$\sqrt{2}$,或b=1+2$\sqrt{2}$(舍去).
當(dāng)直線y=x+b經(jīng)過點(diǎn)(0,3)時(shí),求得b=3.
綜上可得,b的取值范圍是[1-2$\sqrt{2}$,3],
故選:C.

點(diǎn)評(píng) 本題主要考查圓的標(biāo)準(zhǔn)方程,直線和圓的位置關(guān)系,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x(x≥0)}\\{g(x)(x<0)}\end{array}\right.$為奇函數(shù),則f(g(-1))=( 。
A.-28B.-8C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC的兩邊長(zhǎng)分別為2,3,這兩邊的夾角的余弦值為$\frac{1}{3}$,則△ABC的外接圓的直徑為( 。
A.$\frac{9\sqrt{2}}{2}$B.$\frac{9\sqrt{2}}{4}$C.$\frac{9\sqrt{2}}{6}$D.8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+m,x≥m}\\{-x+3m,x<m}\end{array}\right.$.
(1)當(dāng)m=0時(shí),判斷函數(shù)f(x)的奇偶性,并證明;
(2)若f(x)≥2對(duì)一切x∈R恒成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知正四棱臺(tái)高是12cm,兩底面邊長(zhǎng)之差為10cm,全面積為512cm2
(1)求上、下底面的邊長(zhǎng).
(2)作出其三視圖(單位長(zhǎng)度為0.5厘米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對(duì)于函數(shù)f(x)的定義域中任意的x1、x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;
④f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$.
當(dāng)f(x)=2x時(shí),上述結(jié)論中正確的有( 。﹤(gè).
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線y=$\frac{1}{2}$x+a沒有交點(diǎn),求a的取值范圍;
(3)若函數(shù)h(x)=4f(x)+${\;}^{\frac{1}{2}}$x+m•2x-1,x∈[0,log23],是否存在實(shí)數(shù)m使得h(x)最小值為0,若存在,求出m的值; 若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.用數(shù)學(xué)歸納法證明2+3+4+…+n=$\frac{(n-1)(n+2)}{2}$時(shí),第一步取n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)a1,a2,…a2014都是正數(shù)且a1+a2+…+a2014=1.則$\frac{{{a}_{1}}^{2}}{2+{a}_{1}}$+$\frac{{{a}_{2}}^{2}}{2+{a}_{2}}$+…$\frac{{{a}_{2013}}^{2}}{2+{a}_{2013}}$+$\frac{{{a}_{2014}}^{2}}{2+{a}_{2014}}$的最小值為$\frac{1}{4029}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案