分析 利用柯西不等式的變形:設(shè)a1,a2,…an為實(shí)數(shù),b1,b2,…bn為正數(shù),則$\frac{{{a}_{1}}^{2}}{_{1}}$+$\frac{{{a}_{2}}^{2}}{_{2}}$+…+$\frac{{{a}_{n}}^{2}}{_{n}}$≥$\frac{({a}_{1}+{a}_{2}+…+{a}_{n})^{2}}{_{1}+_{2}+…+_{n}}$當(dāng)且僅當(dāng)$\frac{{a}_{1}}{_{1}}$=$\frac{{a}_{2}}{_{2}}$=…=$\frac{{a}_{n}}{_{n}}$時(shí)取等號(hào),計(jì)算即得結(jié)論.
解答 解:$\frac{{{a}_{1}}^{2}}{2+{a}_{1}}$+$\frac{{{a}_{2}}^{2}}{2+{a}_{2}}$+…$\frac{{{a}_{2013}}^{2}}{2+{a}_{2013}}$+$\frac{{{a}_{2014}}^{2}}{2+{a}_{2014}}$≥$\frac{({a}_{1}+{a}_{2}+…+{a}_{2014})^{2}}{2×2014+({a}_{1}+{a}_{2}+…+{a}_{2014})}$=$\frac{1}{4028+1}$=$\frac{1}{4029}$,
當(dāng)且僅當(dāng)$\frac{{a}_{1}}{2+{a}_{1}}$=$\frac{{a}_{2}}{2+{a}_{2}}$=…=$\frac{{a}_{2014}}{2+{a}_{2014}}$取等號(hào),
故答案為:$\frac{1}{4029}$.
點(diǎn)評(píng) 本題考查柯西不等式的變形,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,1+2$\sqrt{2}$] | B. | [1-2$\sqrt{2}$,1+2$\sqrt{2}$] | C. | [1-2$\sqrt{2}$,3] | D. | [1-$\sqrt{2}$,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<λ<1 | B. | λ=0 | C. | λ<0且λ≠-1 | D. | λ≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com