【題目】已知橢圓C: 的右焦點為F(1,0),點P是橢圓C上一動點,若動點P到點的距離的最大值為b2
(1)求橢圓C的方程,并寫出其參數(shù)方程;
(2)求動點P到直線l:x+2y﹣9=0的距離的最小值.

【答案】
(1)解:由題意右焦點為F(1,0),點P是橢圓C上一動點,

若動點P到點的距離的最大值為b2

有:

解得: ,

∴橢圓C的方程為 ,其參數(shù)方程為 (θ為參數(shù))


(2)解:設(shè)點P坐標(biāo)為 ,

則P到直線l:x+2y﹣9=0的距離

,

∴當(dāng) ,即θ=2kπ+ ,k∈Z時,

∴動點P到直線l:x+2y﹣9=0的距離的最小值為


【解析】(1)由橢圓的焦點坐標(biāo),可得c,再由橢圓上的點與焦點的距離最大值為a+c,解方程可得a,b,進而得到橢圓的方程和參數(shù)方程;(2)設(shè)點P坐標(biāo)為 ,運用點到直線的距離公式,以及兩角和的正弦公式,化簡可得距離d,再由正弦函數(shù)的值域,可得最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù)且當(dāng) 時是減函數(shù),若 ,則函數(shù) 的零點共有( )
A.4個
B.5個
C.6個
D.7個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},已知BA.
(1)求實數(shù)m的取值范圍;
(2)當(dāng)x∈N時,求集合A的子集的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面 平面 ,四邊形 為平行四邊形, , , .

(1)求證: 平面
(2)求 到平面 的距離;
(3)求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C1的方程為(x﹣2)2+y2=4.以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2,射線C3的極坐標(biāo)方程為
(1)將曲線C1的直角坐標(biāo)方程化為極坐標(biāo)方程;
(2)若射線C3與曲線C1、C2分別交于點A、B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(m2m-1)x-5m-3m為何值時,f(x):

(1)是冪函數(shù);

(2)是正比例函數(shù);

(3)是反比例函數(shù);

(4)是二次函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隧道的截面是半徑為4.0 m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7 m、高為3 m的貨車能不能駛?cè)脒@個隧道假設(shè)貨車的最大寬度為a m,那么要正常駛?cè)朐撍淼?/span>貨車的限高為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDABCD′中:

(1)求二面角D′-ABD的大;

(2)若MCD′的中點,求二面角MABD的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:

所成角的正切值是;

;

的體積是

平面平面;

直線與平面所成角為

其中正確的有 .(填寫你認(rèn)為正確的序號)

查看答案和解析>>

同步練習(xí)冊答案