【題目】已知橢圓C: 的右焦點為F(1,0),點P是橢圓C上一動點,若動點P到點的距離的最大值為b2 .
(1)求橢圓C的方程,并寫出其參數(shù)方程;
(2)求動點P到直線l:x+2y﹣9=0的距離的最小值.
【答案】
(1)解:由題意右焦點為F(1,0),點P是橢圓C上一動點,
若動點P到點的距離的最大值為b2.
有: ,
解得: ,
∴橢圓C的方程為 ,其參數(shù)方程為 (θ為參數(shù))
(2)解:設(shè)點P坐標(biāo)為 ,
則P到直線l:x+2y﹣9=0的距離
,
∴當(dāng) ,即θ=2kπ+ ,k∈Z時, ,
∴動點P到直線l:x+2y﹣9=0的距離的最小值為
【解析】(1)由橢圓的焦點坐標(biāo),可得c,再由橢圓上的點與焦點的距離最大值為a+c,解方程可得a,b,進而得到橢圓的方程和參數(shù)方程;(2)設(shè)點P坐標(biāo)為 ,運用點到直線的距離公式,以及兩角和的正弦公式,化簡可得距離d,再由正弦函數(shù)的值域,可得最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是奇函數(shù)且當(dāng) 時是減函數(shù),若 ,則函數(shù) 的零點共有( )
A.4個
B.5個
C.6個
D.7個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},已知BA.
(1)求實數(shù)m的取值范圍;
(2)當(dāng)x∈N時,求集合A的子集的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,平面 平面 ,四邊形 為平行四邊形, , , , .
(1)求證: 平面 ;
(2)求 到平面 的距離;
(3)求三棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C1的方程為(x﹣2)2+y2=4.以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2,射線C3的極坐標(biāo)方程為 .
(1)將曲線C1的直角坐標(biāo)方程化為極坐標(biāo)方程;
(2)若射線C3與曲線C1、C2分別交于點A、B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(m2-m-1)x-5m-3,m為何值時,f(x):
(1)是冪函數(shù);
(2)是正比例函數(shù);
(3)是反比例函數(shù);
(4)是二次函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隧道的截面是半徑為4.0 m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7 m、高為3 m的貨車能不能駛?cè)脒@個隧道?假設(shè)貨車的最大寬度為a m,那么要正常駛?cè)朐撍淼?/span>,貨車的限高為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD-A′B′C′D′中:
(1)求二面角D′-AB-D的大;
(2)若M是C′D′的中點,求二面角M-AB-D的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖正方形的邊長為,已知,將沿邊折起,折起后點在平面上的射影為點,則翻折后的幾何體中有如下描述:
①與所成角的正切值是;
②∥;
③的體積是;
④平面⊥平面;
⑤直線與平面所成角為.
其中正確的有 .(填寫你認(rèn)為正確的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com