20.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}2{x^2}-x,x≤0\\-{x^2}+2x,x>0\end{array}\right.$,且關(guān)于x的方程f(x)=m,(m∈R)恰有3個不同的實數(shù)根x1,x2,x3,則x1x2x3的取值范圍是( 。
A.(-1,0)B.$(-\frac{1}{2},+∞)$C.(0,1)D.$(-\frac{1}{2},0)$

分析 畫出函數(shù)f(x)的圖象,不妨設(shè)x1<x2<x3,則-$\frac{1}{2}$<x1<0<x2<1<x3<2,由x2+x3=2,可得0<x2x3<1,由不等式的性質(zhì),即可得到所求范圍.

解答 解:畫出函數(shù)$f(x)=\left\{\begin{array}{l}2{x^2}-x,x≤0\\-{x^2}+2x,x>0\end{array}\right.$的圖象,
依題意得關(guān)于x的方程f(x)=m,(m∈R)恰有三個互不相同的
實數(shù)根x1,x2,x3,不妨設(shè)x1<x2<x3,則
-$\frac{1}{2}$<x1<0<x2<1<x3<2,
又x2,x3關(guān)于x=1對稱,則x2+x3=2,x2x3=-(x2-1)2+1,
∴0<x2x3<1,
∴-$\frac{1}{2}$<x1x2x3<0.
故選D.

點評 本題考查函數(shù)和方程的轉(zhuǎn)化思想的運用,考查二次函數(shù)的對稱性,以及數(shù)形結(jié)合的思想方法,運用不等式的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若(ax+y)(x-y)6的展開式中x4y3的系數(shù)為-35,則a=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.計算:
(1)(2$\frac{7}{9}$)${\;}^{\frac{1}{2}}$+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$
(2)lg0.001+ln$\sqrt{e}$+log2(log216)+2${\;}^{-1+lo{g}_{2}3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.有下列關(guān)系:(1)人的年齡與他(她)體內(nèi)脂肪含量之間的關(guān)系;(2)曲線上的點與該點的坐標(biāo)之間的關(guān)系;(3)紅橙的產(chǎn)量與氣候之間的關(guān)系;(4)學(xué)生與他(她)的學(xué)號之間的關(guān)系.其中有相關(guān)關(guān)系的是( 。
A.(1)、(2)B.(1)、(3)C.(1)、(4)D.(3)、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等差數(shù)列{an}中,若a2,a2014為方程x2-10x+16=0的兩根,則a1+a1008+a2015=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知空間四點A(1,0,0),B(0,1,0),C(0,0,1),P(2,3,m)同在平面α內(nèi),則m的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合M={x|1<x<4},集合N={x|3<x<6}.
(1)求M∩N,∁RN;
(2)設(shè)A={x|a<x<a+4},若A∪∁RN=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)0<α<π,0<β<π,$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(1-cosβ,sinβ),且$\overrightarrow{a}$•$\overrightarrow$=$\frac{3}{2}$-cosβ
(Ⅰ)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ
(Ⅱ)求α、β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期為π,則該函數(shù)的圖象( 。
A.關(guān)于直線x=$\frac{π}{6}$對稱B.關(guān)于直線x=$\frac{π}{4}$對稱.
C.關(guān)于點($\frac{π}{4}$,0)對稱D.關(guān)于點($\frac{π}{6}$,0)對稱

查看答案和解析>>

同步練習(xí)冊答案