分析 根據(jù)題意,由函數(shù)的奇偶性可得f(-x)=f(x),即(x+2)(x-a)=(-x+2)(-x-a),展開可得:x2+(2-a)x-2a=x2-(2-a)x-2a,分析可得答案.
解答 解:根據(jù)題意,函數(shù)y=(x+2)(x-a)是偶函數(shù),
則必有f(-x)=f(x),
即(x+2)(x-a)=(-x+2)(-x-a),
展開可得:x2+(2-a)x-2a=x2-(2-a)x-2a,
分析可得a=2,
故答案為:2.
點(diǎn)評 本題考查函數(shù)奇偶性的運(yùn)用,關(guān)鍵是緊扣函數(shù)奇偶性的定義進(jìn)行分析.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}-1}}{2}$ | B. | -2 | C. | $\frac{{\sqrt{5}+1}}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值3+4$\sqrt{3}$ | B. | 最小值3+4$\sqrt{3}$ | C. | 最大值3+2$\sqrt{3}$ | D. | 最小值3+2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{S}_{6}}{{a}_{6}}$ | B. | $\frac{{S}_{7}}{{a}_{7}}$ | C. | $\frac{{S}_{9}}{{a}_{9}}$ | D. | $\frac{{S}_{8}}{{a}_{8}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com