14.有一段演繹推理是這樣的:“若對(duì)數(shù)函數(shù)y=logax是增函數(shù),已知y=${log_{\frac{1}{4}}}x$是對(duì)數(shù)函數(shù),則y=${log_{\frac{1}{4}}}x$是增函數(shù)”
以上推理的錯(cuò)誤是( 。
A.大前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤B.小前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤
C.推理形式錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤D.大前提和小前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤

分析 由條件根據(jù)演繹推理,得出結(jié)論.

解答 解:由于大前提:對(duì)數(shù)函數(shù)y=logax是增函數(shù),錯(cuò)誤,故得出的結(jié)論:y=${log_{\frac{1}{4}}}x$是增函數(shù),錯(cuò)誤,
故選:A.

點(diǎn)評(píng) 本題主要考查演繹推理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足a${\;}_{n+1}^{2}$=2Sn+n+4,且a2-1,a3,a7恰為等比數(shù)列{bn}的前3項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn=$\frac{n}{_{n}}$-$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若函數(shù)f(x)=2sin(ωx-$\frac{π}{3}$)(ω≠0),且f(2+x)=f(2-x),則|ω|的最小值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{5π}{12}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(x)=ax3+bx+4其中a,b為常數(shù),若f(-2)=-2,則f(2)的值等于( 。
A.10B.6C.-6D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,記命題甲:4a2-a4=0,命題乙:S4=5S2,則命題甲成立是命題乙成立的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知$sinθ-cosθ=-\frac{1}{5}$
(1)求sinθcosθ的值.
(2)求sin3θ-cos3θ的值.
(3)當(dāng)-π<θ<0時(shí),求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知某幾何體的三視圖的側(cè)視圖是一個(gè)正三角形,如圖所示,則該幾何體的表面積等于(  )
A.60+4$\sqrt{3}$+2$\sqrt{21}$B.60+2$\sqrt{3}$+2$\sqrt{21}$C.60+2$\sqrt{3}$+4$\sqrt{21}$D.60+4$\sqrt{3}$+4$\sqrt{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足4(Sn+1)=$\frac{{{{({n+2})}^2}}}{n+1}{a_n}({n∈{N^*}})$
(1)求數(shù)列的通項(xiàng)公式an
(2)設(shè)bn=$\frac{n+1}{a_n}$,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,在一個(gè)棱長(zhǎng)為2的正方體魚(yú)缸內(nèi)放入一個(gè)倒置的無(wú)底圓錐形容器,圓錐的上底圓周與魚(yú)缸的底面正方形相切,圓錐的頂點(diǎn)在魚(yú)缸的缸底上,現(xiàn)在向魚(yú)缸內(nèi)隨機(jī)地投入一粒魚(yú)食,則“魚(yú)食能被魚(yú)缸內(nèi)在圓錐外面的魚(yú)吃到”的概率是(  )
A.1-$\frac{π}{4}$B.$\frac{π}{12}$C.$\frac{π}{4}$D.1-$\frac{π}{12}$

查看答案和解析>>

同步練習(xí)冊(cè)答案