2.已知f(x)=ax3+bx+4其中a,b為常數(shù),若f(-2)=-2,則f(2)的值等于( 。
A.10B.6C.-6D.2

分析 由已知得f(-2)=-8a-2b+44=-2,從而-8a-2b=-6,由此能求出f(2)的值.

解答 解:∵f(x)=ax3+bx+4,其中a,b為常數(shù),
f(-2)=-8a-2b+4=-2,
∴-8a-2b=-6,
∴f(2)=8a+2b+4=6+4=10.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,點(diǎn)P在直線BC上,點(diǎn)Q在△ABC所在的平面內(nèi)運(yùn)動(dòng),且滿足$\overrightarrow{PQ}$=$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$,則點(diǎn)Q的運(yùn)動(dòng)軌跡是過(guò)點(diǎn)A平行于BC的一條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知圓C:x2+y2+2x-4y+3=0.
(1)在x軸、y軸上截距相等的直線l不過(guò)原點(diǎn)且與圓C相切,求直線l的方程;
(2)從圓C外一點(diǎn)P向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且MP=OP,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖所示,PO⊥平面ABC,BO⊥AC,在圖中與AC垂直的直線有4條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-e{x^2}+mx+1$,$g(x)=\frac{lnx}{x}$.
(Ⅰ)函數(shù)f(x)在點(diǎn)(1,f(1))處的切線與直線(1-2e)x-y+4=0平行,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對(duì)任意的x1,x2∈(0,+∞),若g(x1)<f′(x2)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.復(fù)數(shù)$\frac{i}{1-2i}$(i為虛數(shù)單位)的共軛復(fù)數(shù)為(  )
A.$\frac{-2+i}{5}$B.$\frac{-2-i}{5}$C.$\frac{2-i}{5}$D.$\frac{2+i}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.有一段演繹推理是這樣的:“若對(duì)數(shù)函數(shù)y=logax是增函數(shù),已知y=${log_{\frac{1}{4}}}x$是對(duì)數(shù)函數(shù),則y=${log_{\frac{1}{4}}}x$是增函數(shù)”
以上推理的錯(cuò)誤是( 。
A.大前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤B.小前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤
C.推理形式錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤D.大前提和小前提錯(cuò)誤導(dǎo)致結(jié)論錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.給出下列四個(gè)判斷:
①$f(x)=\frac{1}{x}$在定義域上單調(diào)遞減;
②函數(shù)f(x)=2x-x2恰有兩個(gè)零點(diǎn);
③函數(shù)$y={(\frac{1}{2})^{|x|}}$有最大值1;
④若奇函數(shù)f(x)滿足x<0時(shí),f(x)=x2+x,則x>0時(shí),f(x)=-x2+x.
其中正確的序號(hào)是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在區(qū)間(-1,1)中隨機(jī)地取出兩個(gè)數(shù)m,n,求使方程x2+2mx-n2+1=0無(wú)實(shí)根的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案