14.函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在同一個周期內(nèi),當x=$\frac{π}{4}$時y取最大值1,當x=$\frac{7π}{12}$時,y取最小值-1.
(Ⅰ)求函數(shù)的解析式y(tǒng)=f(x)
(Ⅱ)函數(shù)y=sinx的圖象經(jīng)過怎樣的變換可得到y(tǒng)=f(x)的圖象?
(Ⅲ)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

分析 (Ⅰ)通過當x=$\frac{π}{4}$時y取最大值1,當x=$\frac{7π}{12}$時,y取最小值-1.求出函數(shù)的周期,利用最值求出φ,即可求函數(shù)的解析式y(tǒng)=f(x).
(Ⅱ)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律即可得解.
(Ⅲ)根據(jù)正弦函數(shù)的單調(diào)區(qū)間,即可得到函數(shù)的單調(diào)區(qū)間.

解答 解:(Ⅰ)∵當x=$\frac{π}{4}$時y取最大值1,當x=$\frac{7π}{12}$時,y取最小值-1.
∴T=$\frac{2π}{ω}$=$\frac{2π}{3}$,
∴ω=3.----(4分)
∵sin($\frac{3}{4}$π+φ)=1,
∴$\frac{3}{4}$π+φ=2kπ+$\frac{π}{2}$(k∈Z),
即φ=2kπ-$\frac{π}{4}$,
又∵|φ|<$\frac{π}{2}$,
∴可得 φ=-$\frac{π}{4}$,------(6分)
∴函數(shù) f(x)=sin(3x-$\frac{π}{4}$).-------(7分)
(Ⅱ)y=sinx的圖象向右平移$\frac{π}{4}$個單位得y=sin(x-$\frac{π}{4}$)的圖象
再由y=sin(x-$\frac{π}{4}$)圖象上所有點的橫坐標變?yōu)樵瓉淼?\frac{1}{3}$.縱坐標不變,
得到y(tǒng)=sin(3x-$\frac{π}{4}$)的圖象,-----------(9分)
(Ⅲ)令2k$π+\frac{π}{2}$≤3x-$\frac{π}{4}$≤2k$π+\frac{3π}{2}$,(k∈Z),
求得函數(shù)f(x)的單調(diào)遞減區(qū)間為:[$\frac{2kπ}{3}+\frac{π}{4}$,$\frac{2kπ}{3}+\frac{7π}{12}$].-----------(13分)

點評 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象和性質(zhì),考查了數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知正四棱錐的底面邊長為2a,其側(cè)視圖是腰長為2的等腰三角形(如圖所示),當正視圖的面積最大時,該正四棱錐的表面積為( 。
A.8B.8+8$\sqrt{2}$C.8$\sqrt{2}$D.4+8$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知隨機變量X-B(n,p),且E(X)=2,D(X)=1,則p=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)是二次函數(shù),函數(shù)g(x)=x2-2,f(x)+g(x)是奇函數(shù),且方程f(x)=3x+2有兩個相等的實數(shù)根.
(1)求函數(shù)f(x)的表達式;
(2)求x取何值時,函數(shù)f(x)的圖象在函數(shù)g(x)的圖象的上方;
(3)是否存在實數(shù)m,n(m<n),使得函數(shù)f(x)的定義域和值域的分別為[m,n]和[2m,2n]、如果存在,求出m,n的值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個幾何體的三視圖如圖所示,設(shè)該幾何體外接球為O,則過球O的一條半徑中點且與半徑垂直的圓的截面面積為( 。
A.$\frac{9}{4}$πB.$\frac{9}{16}$πC.$\frac{27}{16}$πD.$\frac{27}{32}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,輸出S的值為( 。
A.8B.32C.48D.384

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|x2+2x-3>0},B={x|0<x<2},則A∩B=( 。
A.{x|1<x<2}B.{x|x<-3,或1<x<2}C.{x|x<-3,或0<x<2}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知△ABC中,a=1,C=45°,S△ABC=2,則b=$4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列二次函數(shù)的圖象開口最大的是( 。
A.y=-x2B.y=2x2+3x+1C.y=-$\frac{1}{2}$x2-xD.y=3x2+x-1

查看答案和解析>>

同步練習(xí)冊答案