16.若cos(${\frac{π}{6}$-α)=$\frac{1}{3}$,則cos($\frac{2π}{3}$+2α)=( 。
A.$\frac{2}{9}$B.$-\frac{2}{9}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

分析 根據(jù)誘導(dǎo)公式和二倍角公式化簡計(jì)算即可.

解答 解:∵cos(${\frac{π}{6}$-α)=$\frac{1}{3}$,
∴cos(${\frac{π}{6}$-α)=sin[$\frac{π}{2}$-(${\frac{π}{6}$-α)]=sin($\frac{π}{3}$+α)=$\frac{1}{3}$,
∴cos($\frac{2π}{3}$+2α)=1-2sin2($\frac{π}{3}$+α)=1-$\frac{2}{9}$=$\frac{7}{9}$,
故選:C.

點(diǎn)評 本題考查了誘導(dǎo)公式和二倍角公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+an=2-$\frac{2}{{2}^{n}}$.
(Ⅰ)求a1,a2,a3,a4;
(Ⅱ)求數(shù)列{an}的通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.用硬紙依據(jù)如圖所示(單位;cm)的平面圖形制作一個(gè)幾何體,畫出該幾何體的三視圖并求出其表面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在邊長為2的正△ABC,已知$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BE}$=$\frac{4}{5}$$\overrightarrow{BC}$,則 $\overrightarrow{AE}$•$\overrightarrow{BD}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,△ABC是邊長為2的正三角形,D是AC的中點(diǎn).
(Ⅰ)求證;B1C∥平面A1BD;
(Ⅱ)若直線AB1與平面A1BD所成的角的正弦值為$\frac{\sqrt{21}}{7}$,求此三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某學(xué)習(xí)小組進(jìn)行課外研究性學(xué)習(xí),為了測量如圖所示不能到達(dá)的A、B兩地,他們測得C、D兩地的直線距離為2km,并用儀器測得相關(guān)角度大小分別為∠ADB=30°,∠CDB=30°,∠ACD=60°,∠ACB=45°,則A、B兩地的距離大約等于(  )(提供數(shù)據(jù):$\sqrt{2}≈1.414,\sqrt{3}≈1.732$,結(jié)果保留兩個(gè)有效數(shù)字)
A.1.3B.1.4C.1.5D.1.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果a<b<0,那么下面一定成立的是(  )
A.ac<bcB.a-b>0C.a2>b2D.$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}滿足a1=1,an-an-1=n(n≥2),則數(shù)列{an}的通項(xiàng)公式an=( 。
A.$\frac{1}{2}n(n+1)$B.$\frac{1}{2}n(3n-1)$C.n2-n+1D.n2-2n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.下面的結(jié)論:
①若△ABC是銳角三角形,且A為最大角,則A≥60°;
②已知實(shí)數(shù)a,b,“a>1,且b>1”等價(jià)于“a+b>1,且ab>1”
③對于任意實(shí)數(shù)a,b,式子|a+b|,|a-b|,|1-a|中至少有一個(gè)不小于$\frac{1}{2}$;
④設(shè)SA,SB是圓錐SO的兩條母線,O是底面圓心,C是SB上一點(diǎn),則AC與平面SOB不垂直.
其中正確的有①③④(請把所有正確結(jié)論的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案