分析 把兩個根號里進行變形,那么f(x)可看作為點C到點A和點B距離之和,利用對稱得到最小值即可.
解答 解:f(x)=$\sqrt{{x}^{2}-2x+2}$+$\sqrt{{x}^{2}-8x+25}$
=$\sqrt{(x-1)^{2}+(0-1)^{2}}$+$\sqrt{(x-4)^{2}+(0-3)^{2}}$
可看作點C(x,0)到點A(1,1)和B(4,3)的距離之和.
作A關于x軸的對稱點A'(1,-1),
可得f(x)min=|A'B|=$\sqrt{(1-4)^{2}+(-1-3)^{2}}$=5.
故答案為:5.
點評 考查學生會利用兩點間的距離公式求值,會利用對稱得到距離之和最。畬W生做題時注意數形結合解決問題.
科目:高中數學 來源: 題型:選擇題
A. | f(x)=x+$\frac{1}{4}$ | B. | f(x)=-2x+$\frac{1}{4}$ | C. | f(x)=-x+$\frac{1}{4}$ | D. | f(x)=-x+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 6:5:4 | B. | 7:5:3 | C. | 3:5:7 | D. | 4:5:6 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com